
1

Chapter 1
Python Installation IDEs,

Pycharm and Jupyter Notebook

2

Outline
• Installing Python
• Python programming using:

 Pycharm
o Installing python
o Choosing interpreter and installing packages
o Your first python program on Pycharm
o Debugger

 Anaconda
o Installation And Setup
o Install Python Libraries In Anaconda
o Anaconda Navigator
o Your first python program on Jupyter notebook

3

• Installing Python

Python is a interpreted, high-level, general-purpose programming
language.

4

• Go to https://www.python.org/downloads/, the Python organization
website, and click on “Download Python x.x.x” button, which
downloads the latest offered version. There are Python versions for
different OS other than Windows

https://www.python.org/downloads/

5

• When the executable file is downloaded, run it.
• Make sure to enable “Add Python x.x to PATH” in this window, then

click on “Install Now”.

6

• Python programming using:

• Pycharm
It is a integrated development environment (IDE) used in computer
programming, specifically for Python.

7

Installing Pycharm
• Go to

https://www.jetbrains.com/pycharm/download/#section=windows
And download community version package

https://www.jetbrains.com/pycharm/download/#section=windows

8

• Run the executable file

9

• Choose destination folder to install

10

• When installing finishes, click next on these windows.

11

• Reboot your computer

12

Choosing interpreter and installing
packages
• Interpreter is a program that reads and executes code.
• To choose interpreter, open Pycharm and create a new project.
• File list -> Settings, then click on Project Interpreter under Project:

ProjectName list

13

• Then choose an interpreter from the list in the top which represents
the global python interpreter installed.

14

• To install packages to use in your project, go to the same Project
Interpreter window as you did before.
• You can see the packages you have in a list. To add more, click on the

+ sign on the left side.

15

• Write the name of the package you want in the search bar, a list of
packages appears, click on the one you want then click the Install
Package button.

16

Your first python program on
Pycharm
• Run the Pycharm application, then click on Create New Project

17

• Choose or create a folder

18

• Create a new python file by right clicking the name of the folder,
choose New then choose Python File.

19

• Name your file, Python files have the extension .py

20

• A print() function prints a message to the screen

21

• To run the program, right click on the file name then choose Run
‘hello’.

22

• The result will appear on the console.

23

Debugger
• A tool used to test and find bugs in programs.
• Place breakpoints, which work as stop signs, by clicking the space to

the left of the line.

24

• To start the debugger, right click on the name of the file in browsing
list, then click on debug ‘FileName’.

25

• A window appears in the lower side of the screen, click on the
Resume program button to continue after the breakpoint where the
program stopped.
• Note you can see the value of the variables and how it changes during

the program.

26

Python programming using:

• Anaconda
Anaconda is the data science platform for data scientists, IT
professionals and business leaders of tomorrow. It is a distribution
of Python, R, etc. With more than 300 packages for data science, it
becomes one of the best platforms for any project.

27

Installation And Setup
• To install anaconda go to https://www.anaconda.com/distribution/.

https://www.anaconda.com/distribution/

28

• Choose a version suitable for you and click on download. Once you
complete the download, open the setup.

29

• Follow the instructions in the setup. Don’t forget to click on add
anaconda to my path environment variable.

30

• Create a new folder on drive D or E, then choose this folder to install
Anaconda

31

32

• Follow the instructions in the setup. Don’t forget to click on add
anaconda to my path environment variable. After the installation is
complete, you will get a window like shown in the image below.

33

• After finishing the installation, open anaconda prompt and
type jupyter notebook.

34

35

• You will see a window like shown in the image below.
• If this window do not show up, use one of the links in the Anaconda

prompt shown in the previous page

36

Install Python Libraries In Anaconda

• Open anaconda prompt and check if the library is already installed or
not.

37

• Since there is no module named numpy present, we will run the
following command to install numpy.

38

You will get the window shown in the image once you complete
the installation.

• You will get the window shown in the image once you complete the
installation.

39

• Once you have installed a library, just try to import the module again
for assurance.

40

Anaconda Navigator

• Anaconda Navigator is a desktop GUI that comes with the anaconda
distribution. It allows us to launch applications and manage conda
packages, environment and without using command-line commands.

41

42

Your first python program on Jupyter
notebook
• Click on New tab, then choose Python 3

43

• Type your code on the edit box shown, then click Run to run your
code. Each tab can be executed separately.

44

45

• You can use the (+) tab to add more edit boxes

46

• To save your code click on File, save as, and choose a name for your
file, then click save

47

• To download your code, click on File, Download as, then choose .py so
you can open your code on Pycharm, or .ipynb so you can reopen it
on jupyter notebook

48

• If you open the .py file on the Pycharm it will be as shown in the
figure, you can use Run to run your code as a hole file

49

• If you want to open the .ipynb file, go to juputer notebook, click on
File, the choose Open

50

• Then click on Upload tab, choose your file from your PC, then click
upload.

• Go to Running, then, click on your file. Now you can start modifying
and running each tab as before

Computer Applications Lab

0907331

Lab Sheet1: Python Installation IDEs, Pycharm and Jupyter Notebook

Part 1: Write a Python program on the PyCharm IDE that prints the following information about
you (each in a separate line) using the print() function:

 Your full name
 Your university ID
 Your major
 A motivational quote you like

Example Output (replace with your own data):

Name: Ali Ahmad
ID: 2025001
Major: Computer Engineering
Quote: "Success is no accident."

Part 2: Write a Python program on the PyCharm IDE that helps a company calculate an
employee’s bonus. The bonus is calculated as follows:

 Start with the employee’s salary.
 Add 100 Jordanian Dinars.
 Multiply the result by 3.
 Subtract the taxes, which are 70 Jordanian Dinars.

Note: The employee’s salary is 500 Jordanian Dinars.

Part 3: You are given the following code:

apples = 10
oranges = 5
total_fruits = apples + oranges
apples = apples + 3
print(total_fruits)

Task:

1. Copy this code into PyCharm IDE.
2. Place a breakpoint at line 4 (apples = apples + 3).
3. Using the Debug tool, follow the execution line by line.

Prepared by: Eng. Alaa Arabiyat Page 1 of 2

4. Track the values of apples, oranges, and total_fruits before and after line 4.
5. Explain how the value of total_fruits is affected by modifying apples.
6. Add a new line after line 4 to recalculate total_fruits correctly based on the updated

number of apples.
7. Report the final value of total_fruits.

Part 3: Using Jupyter Notebook

1. Open a Jupyter Notebook and create four cells. Then write a Python program that:
o Declares the length and width of two rectangles in four variables.
o Calculates the area of each rectangle.
o Calculates the sum of the areas.
o Prints the areas of both rectangles and the total area.

Divide your code in four cells as follows:

o In [1]: Declare the length and width of the first rectangle.
o In [2]: Declare the length and width of the second rectangle.
o In [3]: Calculate the area of each rectangle and the total area.
o In [4]: Print the areas of both rectangles and the total area.

2. Save and download your code as .py, then open it in PyCharm IDE to run it.
3. Download your code as .ipynb, then reopen it in Jupyter Notebook to ensure it works.

Prepared by: Eng. Alaa Arabiyat Page 2 of 2

1

Chapter 2
Data Types and Variables

Prepared by
Dr Mohammad Abdel-Majeed, Eng. Abeer Awad and Ayah Alramahi

(Converted to .odp and Modified by Dr Talal A. Edwan)

2

Outline
• Print Statement
• Variables
• Numeric Variables
• Boolean Variables
• Strings
• User Input

3

Print statements
• First program using print() function

 Output:

• Variables: Used to hold a value

Output:

print("hello world")

message = "Hello Python world!"
print(message)

Using ipython on a GNU/Linux shell:

4

Comment
• Comments in Python are indicated by pound sign (#), and anything on the line

following the pound sign is ignored by the interpreter.

• Multiline comment can be done in python by using (''') before and after the

comment lines

• You can comment or uncomment multiple lines by highlighting them then press (Ctrl
+ ?)

5

Variables
• A Variable: is a named place in the memory where a programmer can store

data and later retrieve the data using the variable “name”
• You can change the contents of a variable in a later statement
• Python allows you to assign values to multiple variables in one line, and

multiple commnds in one line.

X = 5
Y = 6
print(X)
print(Y)
X = 10
print(X)
print(Y)
x, y, z = "Orange", "Banana", "Cherry"
print(x);print(y);print(z)

5
6
10
6
Orange
Banana
Cherry

6

Variables (cont.)
Naming and Using Variables
• Case Sensitive
• Variable names can contain only letters, numbers, and underscores.
• They can start with a letter or an underscore, but not with a number.

For instance, you can call a variable message_1 but not 1_message.
• Spaces are not allowed in variable names

• underscores can be used to separate words in variable names.
• For example: greeting_message Vs greeting message

• Avoid using Python keywords and function names as variable names
• Variable names should be short but descriptive.

• name VS N
• student_name VS s_n,
• name_length Vs length_of_persons_name.

7

Reserved Words
Python reserve 35 keywords:
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Variables (cont.)

8

Naming errors

message = “Hello\nPython\tworld!”
print(mesage)

Traceback (most recent call last):
 File "main.py", line 4, in <module>
 print(mesage)
NameError: name 'mesage' is not defined

9

Variables (cont.)
Assignment Operator
• We assign a value to a variable using the assignment statement (=)
• An assignment statement consists of an expression on the right hand side and

a variable to store the result

10

Variables (cont.)
Variable Types
• Variable type is based on the data stored(assigned) to the variable

X = "5"
print(type(X))
X = 10
print(type(X))
X = 10.0
print(type(X))
X = True
print(type(X))

<class 'str'>
<class 'int'>
<class 'float'>
<class 'bool'>

11

Numeric Variables
• Hold Integer or Float types
• Numeric operators are applied
• Precedence rules (Highest to lowest)

• Parenthesis
• Exponentiation (raise to a power)
• Multiplication, Division, and Remainder
• Addition and Subtraction
• Left to right

Operator Operation
+ Addition
- Subtraction

* Multiplicatio
n

/ Division
** Power
% Remainder

12

Numeric Variables (cont.)
Numeric Expressions
• When you perform an operation where one operand is an integer and the

other operand is a floating point the result is a floating point
• The integer is converted to a floating point before the operation

x = 15
y = 4
y_float = 4.0
print(x + y)
print(x - y)
print(x % y)
print(x * y)
print(x ** y)
print(x / y_float)
print(x / y)
print(x // y)

19
11
3
60
50625
3.75
3.75
3

13

Numeric Variables (cont.)
Built-in Numeric Tools :
• Built-in mathematical functions
• abs(x), pow(x,y), round(x), cmp(x,y)

• Conversion Functions
• hex(num), oct(num), int(string), str(num)

• Collection Functions
• max(sequence), min(sequence)

Built-in modules:
• Python has a lot of built-in modules, you can find them on – also check the

deprecated ones:
 https://docs.python.org/3/py-modindex.html

used in Python 2,
deprecated in

Python 3.

https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/py-modindex.html

14

Numeric Variables (cont.)
• math module in Python
• One of the built-in functions that contains many mathematical functions listed

in this link:
https://docs.python.org/3/library/math.html

import math
print(math.pow(5,3))
print(math.sqrt(45))

125.0
6.708203932499369

https://docs.python.org/3/library/math.html

15

Boolean Variables
• Store the value True or False

a = True
print(type(a))

<class 'bool'>

16

Integers and Floats as Booleans
• Zero is interpreted as False
• NonZero is interpreted as True

zero_int = 0
print(bool(zero_int))

nonzero_int = 5
print(bool(nonzero_int))

zero_float = 0.0
print(bool(zero_float))

nonzero_float = 5.0
print(bool(nonzero_float))

False
True
False
True

17

Boolean Arithmetic
• Boolean arithmetic is the arithmetic of true and false logic
• Boolean Operators

• and
• or
• Not
• Equal (==)
• Not Equal (!=)

18

Boolean Variables (cont.)
Comparison Operators
• compare the values of 2 objects and returns True or False
• >, < , <=, <=, ==, !=

A = 5
B = 6
print(A > B)

False

19

exp1= 1==2
print(exp1)
exp2 = 7 > 3
print(exp2)
print(exp1 and exp2)
exp3 = 3 < 1
print(exp1 or exp3)
print(not exp3)
exp4= 5!= 7
print(exp4)

False
True
False
False
True
True

• Using operators with Boolean expressions

20

Bitwise Operators
• Bitwise operators are used to compare integers in their binary formats.
• When performing a binary operations between 2 integers, they are first

converted into binary numbers.

Bitwise Operator Description

& Bitwise and

| Bitwise or

~ Bitwise not

>> Bitwise shift right

<< Bitwise shift left

21

A = 5
B = 6
print(A & B)
print(A | B)
print(~B)
print(A >>1)
print(A <<1)

4
7
-7
2
10

• (~) returns one’s complement of the number.
a = 6 = 0110 (binary 2’s comp. rep.) → ones’ complement of 0110 is 1001
~a = ~0110 → since this is in two’s complement
 representation to obtain the decimal equivalent
 of this negative number, we take the two’s
 compliment:
 = -(0110 + 1) -(0110 + 1) = -(0111) = -7
 = -(0111)
 = -7 (Decimal)

Rule:
~n = -(n+1)

Ex:
C = -3 = 1101 (2’s comp.)
~C = 0010 but this is 2 in decimal

Or n = -3, then,
~(-3) = -(-3+1) = 2

22

Operators Precedence
High

Low

23

Strings
• String: a series of characters.

• Anything inside quotes is considered a string in Python
• You can use single or double quotes around strings

• "This is a string."
• 'This is also a string.'

• Use quotes and apostrophes within your strings
• 'I told my friend, "Python is my favorite language!"'
• "The language 'Python' is named after Monty Python, not the snake.“
• "One of Python's strengths is its diverse and supportive community.“

• To repeat a string n time, use print(n* str)

Ex: print(3* "hello ")
 output

Watch the space inside the string!

24

Strings (cont.)
Strings—escape characters
• \n: new line
• \t: tab
• \\: prints \
• You can ignore escape characters by preceding the string quotes with r
• Ex: Sample = r”This is \n a new string”

sample_string1 = r"Computer Application Lab \
n 0909331"
sample_string2= "Computer Application Lab \n
0909331"
print(sample_string1)
print(sample_string2)

Computer Application Lab \n 0909331
Computer Application Lab
 0909331

25

Strings (cont.)
Strings Methods
• A method is an action that Python can perform on a piece of data
• title() method

• The dot (.) after name in name.title() tells Python to make the title() method act on the variable name.

• How to print on the same line?

lab_name = "computer application lab"
print(lab_name)
print(lab_name.title())

computer application lab
Computer Application Lab

26

Strings Methods
• upper() method, Variable_name.upper()
• lower() method, Variable_name.lower()
Methods do not affect the original string

String in Python have a lot of methods , refer to this link to see them
https://www.w3schools.com/python/python_ref_string.asp

lab_name = "computer application lab"
print(lab_name)
print(lab_name.title())
print(lab_name.upper())
print(lab_name)
print(lab_name.lower())

computer application lab
Computer Application Lab
COMPUTER APPLICATION LAB
computer application lab
computer application lab

https://www.w3schools.com/python/python_ref_string.asp

27

Strings (cont.)
• islower() method checks if the string is in lower case
• isupper() method checks if the string is in upper case
• isalnum() method returns True if all the characters are alphanumeric, meaning

alphabet letter (a-z) and numbers (0-9).
• replace() method replaces a specified phrase with another specified phrase,

string.replace(oldvalue, newvalue,count), count is optional, it decides how many
oldvalues do you want to replace

sample = " Computer 1"
print(sample.lower())
print(sample.upper())
print(sample.islower())
print(sample.isupper())
print(sample.isalnum ())
print(sample.replace (' ', "_"))

computer 1
COMPUTER 1
False
False
False
_Computer_1

28

String: in, not in, stratswith, endswith, len
• Check if a certain string appears inside another string

• Ex: ‘Welcome’ in ‘Welcome to the computer applications lab ’
• Ex: sentence = ‘Welcome to the computer applications lab ’

 ‘Welcome’ in sentence

• Check if certain string starts or ends with a certain string
• Ex: sentence = ‘Welcome to the computer applications lab ’

 sentence.startswith(‘Welcome’)
 sentence.endswith(‘Lab’)

• len(string) is used to find the length of the string

sample = "Computer Application Lab"
print("computer" in sample)
print("Computer" in sample)
print(sample.startswith("Computer"))
print(sample.startswith("Com"))
print(sample.endswith("Lab"))
print(len(sample))

False
True
True
True
True
24

29

Strings (cont.)
Concatenating Strings
• Python uses the plus symbol (+) to combine strings
• Combining strings is called concatenation

lab_name = "computer applications lab"
lab_no = "0907311"
lab_info = lab_name + " " +lab_no
Print(lab_info.title())

Computer Application Lab 0907311

30

Strings (cont.)
Strings—split() and join()
• split(): splits a string using specified delimiter
• Returns a list

• join(): takes a list of strings and join them

lab_name = "computer applications lab"
print(lab_name.split())
print(lab_name.split('a'))
lab_name=['computer', 'application',
'lab']
space=" "
print(space.join(lab_name))
coma=","
print(coma.join(lab_name))

['computer', 'application', 'lab']
['computer ', 'pplic', 'tion l', 'b']
computer application lab
computer,application,lab

31

String indexing
• In Python, we can also index backward, from the end—positive indexes count

from the left, and negative indexes count back from the right
• Indexing is done using square brackets

S = "Computer"
print(S)
print(S[0:len(S)])
print(S[0])
print(S[-1])
print(S[1:])
print(S[-3:])
print(S[0:-2])
print(S[:3])
print(S[3:])

Computer
Computer
C
r
omputer
ter
Comput
Com
puter

32

Strings (cont.)
Strings Immutability
• Strings do not support item assignment

S = "Computer"
S[0] = "A"

Traceback (most recent call last):
 File "main.py", line 2, in <module>
 S[0] = "A"
TypeError: 'str' object does not support item assignment

33

Strings (cont.)
Stripping Whitespace
• strip()
• lstrip()
• rstrip()

lab_name = " computer application lab "
print(lab_name)
print(lab_name.lstrip())
print(lab_name.rstrip())
print(lab_name.strip())

 computer application lab
computer application lab
 computer application lab
computer application lab

34

Strings (cont.)
Type Conversion
• str(): Covert a variable to string
• int(): Covert a variable to integer
• float(): Covert a variable to float

lab_name = " computer application lab "
x = 20
print(" The number of students in the" + lab_name + "is " + x)

Traceback (most recent call last):
 File "main.py", line 3, in <module>
 print(" The number of students in the" + lab_name
+ "is " + x)
TypeError: can only concatenate str (not "int") to str

35

Strings (cont.)

lab_name = " computer application lab "
x = 20
print(" The number of students in the" + lab_name + "is " + str(x))

 The number of students in the computer application lab is 20

36

User Input
• input() function is used to get the user input
• The input() function pauses your program and waits for the user to

enter some text.
• Once Python receives the user’s input, it stores it in a variable to

make it convenient for you to work with

message = input("Enter your first name: ")
print(message)

Enter your first name: Mohammed
Mohammed

37

User Input (cont.)
message = "Welcome to the Computer Application Lab"
message += " \nPlease Enter Your First Name: "
first_name= input(message)
print("Hello " + first_name)

Welcome to the Computer Application Lab
Please Enter Your First Name: Mohammed
Hello Mohammed

38

User Input (cont.)
Accept Numerical Input
• When you use the input() function, Python interprets everything the user enters

as a string.
X = input("Enter a Number: ")
X = X +5

Enter a Number: 5
Traceback (most recent call last):
 File "main.py", line 2, in <module>
 X = X +5
TypeError: can only concatenate str (not "int") to str

39

User Input (cont.)

X = input("Enter a Number: ")
X = int(X) +5
print("X + 5 = " + X)

Enter a Number: 5
Traceback (most recent call last):
 File "main.py", line 3, in <module>
 print("X + 5 = " + X)
TypeError: can only concatenate str (not "int") to str

40

User Input (cont.)

X = input("Enter a Number: ")
X = int(X) +5
print("X + 5 = " + str(X))

Enter a Number: 6
X + 5 = 11

Prepared by: Eng. Alaa Arabiyat Page 1 of 3

Computer Applications Lab

0907331

Lab Sheet2: Data Types and Variables

Part 1: Write a Python program that asks the user to enter values for x, y, and z. Then, calculate

and print the value of C using the given formula, making sure to carefully follow Python's

operator precedence rules.

Example Input:

 x = 2
 y = 3
 z = 4

Expected Output:

C = -26.30958424017657

Part 2: Write a Python program to generate a password using the user's full name and favorite

quote, applying some string methods.

Tasks:

1. Prompt the user to enter their full name and favorite quote.

2. Ask the user to convert all letters in the quote to lowercase before processing.

3. Construct the password following these rules:

o Take the first 3 letters of the first name in lowercase. Before appending, check

with islower() to ensure they are lowercase.

o Take the last 2 letters of the last name in uppercase. Before appending, check with

isupper().

o In the favorite quote:

 Replace the first letter of the quote wherever it appears in the quote with

"X" using .replace(first_letter, "X", 2).

 Then take the first and last letters of the modified quote in uppercase.

o Append the length of the favorite quote at the end.

o Use in to check if the quote contains any digits.

o Use startswith() to check if the first name starts with a vowel.

Prepared by: Eng. Alaa Arabiyat Page 2 of 3

o Use isalnum() to ensure the generated password contains only alphanumeric

characters.

4. Print the generated password with a descriptive message.

5. Print messages indicating:

o Whether the favorite quote contains digits.

o Whether the first name starts with a vowel.

o Whether the password is alphanumeric

Example Input:

Full Name: Hamzeh Rami

Favorite Quote: Success comes to those who persist

Expected Output:

Generated Password: hamMIXt34

Favorite quote contains digits: False

First name starts with a vowel: False

Password is alphanumeric: True

Part 3: Write a Python program to manage a user's monthly salary and expenses as follows:

1. Prompt the user to enter their monthly salary and expenses (rent, grocery, utilities) in one

line, separated by commas. Use the strip() method to remove any extra spaces at the

beginning or end of the input.

2. Split the input string into separate values.

3. Convert all values to integers using int().

4. Calculate the following:

o Total expenses

o Remaining balance = salary − total expenses

o Apply a 5% bonus to the remaining balance

5. Use abs() to ensure the remaining balance is not negative.

6. Print all results rounded to 2 decimal places, including:

o Salary

o Total Expenses

o Remaining Balance

o Final Balance with Bonus

7. At the end, join all outputs into a single summary string separated by | and print it.

Example Input:

Enter salary and expenses (salary,rent,grocery,utilities): 2500,1200,500,300

Expected Output:

Salary: 2500.00

Prepared by: Eng. Alaa Arabiyat Page 3 of 3

Total Expenses: 2000.00

Remaining Balance: 500.00

Final Balance with Bonus: 525.00

Summary: Salary: 2500.00 | Total Expenses: 2000.00 | Remaining Balance:

500.00 | Final Balance with Bonus: 525.00

Part 4: Managing User Permissions with Bitwise Operators.

A system stores user permissions using bits in a single integer:

 Bit 0 → Read permission

 Bit 1 → Write permission

 Bit 2 → Execute permission

 Bit 3 → Admin permission

Tasks:

1. Ask the user to enter the current permission value (an integer between 0 and 15).

2. Using bitwise operators, perform the following operations:

o Grant Write permission without affecting other permissions.

o Revoke Execute permission without affecting other permissions.

o Toggle the Admin permission.

o Check whether the user has Read permission.

3. Print the updated permission in both binary and decimal formats.

Example Input:

Enter current permissions (0-15): 5

(Binary 0101 → Read=ON, Write=OFF, Execute=ON, Admin=OFF)

Expected Output:

Updated Permissions (binary): 1011

Updated Permissions (decimal): 11

Read permission is ON

1

Lists, Tuples,
Dictionaries and Set

(Chapter 4)
Prepared by

Dr Mohammad Abdel-Majeed, Eng. Abeer Awad and Ayah Alramahi
(Converted to .odp and Modified by Dr Talal A. Edwan)

2

Outline
• List in Python
• Tuples
• Dictionaries
• Set

3

List in Python
• A list is a collection of items in a particular order
• Numbers, letters, strings etc.
• mutable

• Defined using square brackets []
 bicycles =['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']

4

List in Python
• List can have elements with different types

Mixed_List = ['treck',5, True, 'A']
print(type(Mixed_List[0]))
print(type(Mixed_List[1]))
print(type(Mixed_List[2]))
print(type(Mixed_List[3]))

<class 'str'>
<class 'int'>
<class 'bool'>
<class 'str'>

5

Accessing elements in the list
• Index Positions Start at 0, Not 1

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[0])

trek

6

• By asking for the item at index -1, Python always returns the last item
in the list:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[-1])

specialized

7

Modifying Elements in a List
• To change an element, use the name of the list followed by the index of the

element you want to change, and then provide the new value you want that item
to have.

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

bicycles[0] = "BMX"
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['BMX', 'cannondale', 'redline', 'specialized']

8

Adding Elements to a List– append()
• Add element after the last element in the list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

bicycles.append("BMX")
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'redline', 'specialized', 'BMX']

9

Adding Elements to a List– insert()
• The element will be inserted before the item located at the specified index.

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

bicycles.insert(2,"BMX")
print(bicycles)

bicycles.insert(-1,"Honda")
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'BMX', 'redline', 'specialized']
['trek', 'cannondale', 'BMX', 'redline', 'Honda', 'specialized']

10

Removing Elements from a List
• You can remove an item according to its position in the list or according to its
value
• del statement can be used to remove an element from the list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

del bicycles[1]
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'redline', 'specialized']

11

• pop() method removes and return the last element in the list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

element = bicycles.pop()
print(bicycles)
print(element)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'redline']
specialized

12

• pop(index) method removes and return the the element at the given index

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

element = bicycles.pop(2)
print(bicycles)
print(element)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'specialized']
redline

13

Removing Elements from a List by Value
• remove(Value) method can be used to remove an element from a list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

bicycles.remove("cannondale")
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'redline', 'specialized']

14

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)

bicycles.remove("trek")
print(bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['cannondale', 'redline', 'specialized']

15

• The remove() method deletes only the first occurrence of the value you
specify

bicycles = ['trek', 'cannondale', ‘trek', 'specialized']
print(bicycles)

A = "trek"
bicycles.remove(A)
print(bicycles)

['trek', 'cannondale', 'trek', 'specialized']
['cannondale', 'trek', 'specialized']

16

Copying a List
• You cannot copy a list simply by typing list2 = list1, because: list2 will only be a

reference to list1, and changes made in list2 will automatically also be made in
list1.

List1 = ['trek', 'cannondale', 'bmx', 'specialized']
List2 = List1
List2[0] = 'bmx'
print(List2)
print(List1)

['bmx', 'cannondale', 'bmx', 'specialized']
['bmx', 'cannondale', 'bmx', 'specialized']

17

• There are ways to make a copy, one way is to use the built-in List method copy().

List1 = ['trek', 'cannondale', 'bmx', 'specialized']
List2 = List1.copy()
List2[0] = 'bmx'
print(List2)
print(List1)

['bmx', 'cannondale', 'bmx', 'specialized']
['trek', 'cannondale', 'bmx', 'specialized']

18

• Another way is to use [:].

List1 = ['trek', 'cannondale', 'bmx', 'specialized']
List2 = List1[:]
List2[0] = 'bmx'
print(List2)
print(List1)

['bmx', 'cannondale', 'bmx', 'specialized']
['trek', 'cannondale', 'bmx', 'specialized']

19

Organizing a List-Sorting
• sort() method

• Permanent sort

• sort(reverse = True)

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print(bicycles)

bicycles.sort()
print(bicycles)

['trek', 'cannondale', 'bmx', 'specialized']
['bmx', 'cannondale', 'specialized', 'trek']

20

• Sort is applied to the same type of data

bicycles = ['trek', 'cannondale', 2, 'specialized']
print(bicycles)

bicycles.sort()

print(bicycles)

['trek', 'cannondale', 2, 'specialized']
Traceback (most recent call last):
 File "main.py", line 4, in <module>
 bicycles.sort()
TypeError: '<' not supported between instances of 'int' and
'str'

21

• sorted() function, not Permanent, it returns a sorted copy of the list

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print(bicycles)

s_bicycles = sorted(bicycles)
print(bicycles)
print(s_bicycles)

['trek', 'cannondale', 'bmx', 'specialized']
['trek', 'cannondale', 'bmx', 'specialized']
['bmx', 'cannondale', 'specialized', 'trek']

22

Printing the list in the reversed order
• reverse() method

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print(bicycles)

s_bicycles = bicycles.reverse()
print(bicycles)
print(s_bicycles)

['trek', 'cannondale', 'bmx', 'specialized']
['specialized', 'bmx', 'cannondale', 'trek']
None

23

Length of a List
• Len() function returns the length of the list.

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print(bicycles)

print(len(bicycles))

4

24

Unpack a collection
• If you have a collection of values in a list, tuple etc. Python allows you to extract

the values into variables. This is called unpacking.

fruits = ["apple", "banana", "cherry"]
x, y, z = fruits
print(x)
print(y)
print(z)

apple
banana
cherry

25

The list() Constructor
• It is also possible to use the list() constructor when creating a new list.

mylist = list(("apple", "banana", "cherry")) # note the double round-brackets
print(mylist)

['apple', 'banana', 'cherry']

26

27

Looping through the list
• for loop: pull an item from the bicycles list and place it in the variable bicycle

• Indentation is important
• We will cover looping and control structures later

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']

for bicycle in bicycles:
 print(bicycle)

trek
cannondale
bmx
specialized

Indentation

28

range() function
• range() function makes it easy to generate a series of numbers.
• You can convert the results of range() directly into a list using the list() function

• The step between the numbers in the list can be changed
• By default the step is 1
• range(start, end, step)

[3, 4, 5, 6, 7, 8, 9, 10, 11]print(list(range(3,12))

[3, 5, 7, 9, 11]print(list(range(3,12,2))

29

• To print the numbers from 1 to 4 on different lines, you would use
range(1,5) with a for loop

for value in range(1,5):
 print(value)

1
2
3
4

30

Statistics with list of numbers

digits = [1,2,3,4,5,6,7,8,9,0]

print(min(digits))

print(max(digits))

print(sum(digits))

0
9
45

31

List Comprehensions
• Offers a shorter syntax when you want to create a new list based on the values of an existing list
• You can do all that with only one line of code
 newlist = [expression for item in iterable if condition == True]

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]
newlist = [x for x in fruits if "a" in x]
print(newlist)

['apple', 'banana', 'mango']

32

• The condition is optional and can be omitted

squares = [value**2 for value in range(1,11)]
print(squares)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

['apple', 'banana', 'cherry', 'kiwi', 'mango']

newlist = [x for x in fruits]
print(newlist)

33

Slicing a list
• To make a slice, you specify the index of the first and last elements you want to

work with
• List[first:last]Last not included
• fist is emptyfrom the beginning
• Last is emptytill the end of the list

players = ['charles', 'martina', 'michel', 'florence', 'eli']
print(players[0:3])
print(players[0:])
print(players[:3])
print(players[:])
print(players[-3:])

['charles', 'martina', 'michel']
['charles', 'martina', 'michel', 'florence', 'eli']
['charles', 'martina', 'michel']
['charles', 'martina', 'michel', 'florence', 'eli']
['michel', 'florence', 'eli']

34

Looping Through a Slice

players = ['charles', 'martina', 'michel', 'florence', 'eli']
print('Here are the first three players on my team: ')
for player in players[:3]:
 print(player.title())

Here are the first three players on my team:
Charles
Martina
Michel

35

Multi-Dimensional Lists
• Multi-dimensional lists are the lists within lists.

a = [[2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [4, 8, 12, 16, 20]]
for record in a:
 print(record)

[2, 4, 6, 8, 10]
[3, 6, 9, 12, 15]
[4, 8, 12, 16, 20]

a = [[2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [4, 8, 12, 16, 20]]
for record in a:
print(record)
[[2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [20, 16, 12, 8, 4]]

36

Tuples
• Tuple is an immutable list, defined by using () brackets.
• It can be accessed using list indexing

• Since tuples are indexed, they can have items with the same valueTuple items

• Tuple can be of any data type (int, str, Boolean, …)

dimensions = (200,50)
print(dimensions[0])
print(dimensions[1])

200
50

tuple1 = ("apple", "banana", "cherry")
tuple2 = (1, 5, 7, 9, 3)
tuple3 = (True, False, False)
tuple1 = ("abc", 34, True, 40, "male")

37

dimensions = (200,50)
dimensions[0] = 30

Traceback (most recent call last):
 File "main.py", line 2, in <module>
 dimensions[0] = 30
TypeError: 'tuple' object does not support item assignment

• Its values cannot be changed

38

Looping Through All Values in a Tuple
• Similar to the lists

dimensions = (200,50)
for dimension in dimensions:
 print(dimension)

200
50

39

dimensions = (200,50)
print(dimensions)

dimensions = (400,500)
print(dimensions)

(200, 50)
(400, 500)

40

Create Tuple With One Item
• To create a tuple with only one item, you have to add a comma after the item,

otherwise Python will not recognize it as a tuple.

a tuple
tlist = ("apple",)
print(type(tlist))

#NOT a tuple
tlist = ("apple")
print(type(tlist))

<class 'tuple'>
<class 'str'>

41

Unpacking a Tuple
• When we create a tuple, we normally assign values to it. This is called "packing" a

tuple, we are also allowed to extract the values back into variables. This is called
"unpacking"

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)
print(yellow)
print(red)

apple
banana
cherry

42

Using Asterisk*
• If the number of variables is less than the number of values, you can add an * to

the variable name and the values will be assigned to the variable as a list

fruits = ("apple", "banana", "cherry", 'strawberry', " raspberry ")

(green, yellow, *red) = fruits

print(green)
print(yellow)
print(red)

apple
banana
['cherry', 'strawberry', 'raspberry']

43

Join Two Tuples
• To join two or more tuples you can use the + operator

tuple1 = ("a", "b" , "c")
tuple2 = (1, 2, 3)

tuple3 = tuple1 + tuple2
print(tuple3)

('a', 'b', 'c', 1, 2, 3)

44

Tuple Methods
• Python has two built-in methods that you can use on tuples count(), index()

thistuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)

x = thistuple.count(5)

print(x)

2

thistuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)

x = thistuple.index(8)

print(x)

3

45

Dictionaries
• A dictionary in Python is a collection of key-value pairs
• You can use a key to access the value associated with that key
• A key’s value can be a number, a string, a list, or even another dictionary
• A dictionary is wrapped in braces, {}
• Every key is connected to its value by a colon
• Individual key-value pairs are separated by commas

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': '22'}

46

Dictionaries
• storing different kinds of information about one object

• You can also use a dictionary to store one kind of information about
many objects

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': '22'}

Age = {'Mohammad': 22, 'Ahmad': 40, 'Ayman': 30}

47

Accessing Values in a Dictionary
• To get the value associated with a key, give the name of the dictionary and then

place the key inside a set of square brackets

• There is also a method called get() that will give you the same result

student = {'name': 'Mohammad', 'Gender': 'M',
'Age': '22'}
print(student['name']) Mohammad

student = {'name': 'Mohammad', 'Gender': 'M', 'Age':
'22'}
print(student.get('name')) Mohammad

48

Adding New Key-Value Pair
• Would give the name of the dictionary followed by the new key in square

brackets along with the new value.

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': '22'}
print(student['Age'])

student['city'] = 'Amman'
print(student)

22
{'city': 'Amman', 'name': 'Mohammad', 'Gender': 'M', 'Age': '22'}

49

student ={}
print(student)

student['Age'] = 22
student['name'] = 'Mohammad'
student['Gender'] = 'M'
student['city'] = 'Amman'
print(student)

{}
{'Age': 22, 'name': 'Mohammad', 'Gender': 'M', 'city': 'Amman'}

50

Modifying Values in a Dictionary
• give the name of the dictionary with the key in square brackets and then the new

value you want associated with that key.
student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print(student)

student['Age'] = 25
print(student)

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
{'name': 'Mohammad', 'Gender': 'M', 'Age': 25}

51

Removing Key-Value Pairs
• Use the del statement to completely remove a key-value pair.
• All del needs is the name of the dictionary and the key that you want to remove.

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print(student)

del student['Gender']
print(student)

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
{'name': 'Mohammad', 'Age': 22}

52

Removing Key-Value Pairs—pop()
• Use pop() method to remove key from a dictionary.
• pop() returns the value of the corresponding key()

my_dict = {'C1': 30, 'C2':25, 'C3':33}

my_dict.pop('C1')
print(my_dict)

{'C2': 25, 'C3': 33}

53

Get keys, and values
• The keys() method will return a list of all the keys in the dictionary
• The values() method will return a list of all the values in the dictionary
• The items() method will return each item in a dictionary, as tuples in a list

my_dict = {'C1': 30, 'C2':25, 'C3':33}

K = my_dict.keys()
print(K)
V = my_dict.values()
print(V)
I = my_dict.items()
print(I)

dict_keys(['C1', 'C2', 'C3'])
dict_values([30, 25, 33])
dict_items([('C1', 30), ('C2', 25), ('C3', 33)])

54

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print(student)

for key,value in student.items():
 print('the key is: ' + key +" and its value is: "+ str(value))

{'name': 'Mohammad', 'Gender': 'M', 'Age':
22}
the key is: name and its value is: Mohammad
the key is: Gender and its value is: M
the key is: Age and its value is: 22

Looping Through a Dictionary- Key-Value Pairs

55

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print(student)

for key in student.keys():
 print('the key is: ' + key)

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
the key is: name
the key is: Gender
the key is: Age

Looping Through a Dictionary- Keys

56

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print(student)
for key in sorted(student.keys()):
 print('the key is: ' + key)

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
the key is: Age
the key is: Gender
the key is: name

Looping Through a Dictionary- Sorted Keys

57

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print(student)

for value in student.values():
 print('the value is: ' + str(value))

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
the value is: Mohammad
the value is: M
the value is: 22

Looping Through a Dictionary- Values

58

student_1 = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
student_2 = {'name': 'Ahmad', 'Gender': 'M', 'Age': 25}
student_3 = {'name': 'Lina', 'Gender': 'F', 'Age': 18}
students = [student_1, student_2, student_3]

for student in students:
 print(student)

print(students[0]['name'])
{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
{'name': 'Ahmad', 'Gender': 'M', 'Age': 25}
{'name': 'Lina', 'Gender': 'F', 'Age': 18}
Mohammad

List of Dictionaries

59

pizza = {
'crust': 'thick',
'toppings':['mushrooms','extra cheese']}

print('You ordered a '+ pizza['crust']+ '-crust pizza '+ 'with the
following toppings')
for topping in pizza['toppings']:
 print("\t" + topping)

You ordered a thick-crust pizza with the following toppings
 mushrooms
 extra cheese

List in a Dictionary

60

favorite_language = {
'jen':['python','ruby'],
'sara': ['c'],
'edward':['ruby','go'],
}
for name, languages in favorite_language.items():
 print("\n" + name.title() + "'s favorite language are:")
 for language in languages:
 print("\t" + language.title())

Jen's favorite language are:
 Python
 Ruby

Sara's favorite language are:
 C

Edward's favorite language are:
 Ruby
 Go

61

users = {
'aeinstein':{
'first': 'albert',
'last': 'einstein',
'location': 'princeton',
},
'mcurie':{
'first': 'marie',
'last': 'curie',
'location': 'paris',
},
}
for username, user_info in users.items():
 print("\nUsername: " + username)
 full_name = user_info['first']+ " "
 +user_info['last']
 location = user_info['location']

 print("\tFull name: "+ full_name.title())
 print("\tLocation: " + location.title())

Username: aeinstein
 Full name: Albert Einstein
 Location: Princeton

Username: mcurie
 Full name: Marie Curie
 Location: Paris

Dictionary in a Dictionary

62

Concatenate Dictionaries--Update
• The update() method updates the dictionary with the elements from the another

dictionary object or from an iterable of key/value pairs.
d = {1: "one", 2: "three"}
d1 = {2: "two"}

#update the value of key 2
d.update(d1)
print(d)

d1={3: "three"}
adds element with key 3
d.update(d1)
print(d)

d= {'x':2}
d.update(y = 3, z = 0)
print(d)

{1: 'one', 2: 'two'}
{1: 'one', 2: 'two', 3: 'three'}
{'x': 2, 'y': 3, 'z': 0}

63

Set
• Sets are used to store multiple items in a single variable.
• A set is a collection which is unordered, unchangeable*, and unindexed.

*Note: Set items are unchangeable, but you can remove items and add new items.
• Sets are written with curly brackets {}.
• sets are defined as objects with the data type 'set'
• Sets are unordered, so you cannot be sure in which order the items will appear.

 set1 = {"apple", "banana", "cherry"}
print(set1)

{'apple', 'cherry', 'banana'}

64

• Sets cannot have two items with the same value.

• To determine how many items a set has, use the len() function
• Set items can be of any data type, and can contain different data types

set1 = {"apple", "banana", "cherry", "apple"}
print(set1)

{'apple', 'cherry', 'banana'}

set1 = {"apple", "banana", "cherry"}
set2 = {1, 5, 7, 9, 3}
set3 = {True, False, False}
set1 = {"abc", 34, True, 40, "male"}

65

The set() Constructor
• Using the set() constructor to make a set

set1 = set(("apple", "banana", "cherry")) # note the double round-
brackets
print(set1)

{'apple', 'cherry', 'banana'}

66

Access Items
• You cannot access items in a set by referring to an index or a key.
• You can loop through the set items using a for loop, or ask if a specified value is

present in a set, by using the in keyword.

set1 = {"apple", "banana",
"cherry"}
for x in set1:
 print(x)

cherry
apple
banana

set1 = {"apple", "banana", "cherry"}
print("banana" in set1)

True

67

Change, and add Items
• Once a set is created, you cannot change its items, but you can add new items.
• To add one item to a set use the add() method.

• To add items from another set into the current set, use the update() method

set1 = {"apple", "banana", "cherry"}
set1.add("orange")
print(set1)

{'orange', 'apple', 'cherry', 'banana'}

set1 = {"apple", "banana", "cherry"}
tropical = {"pineapple", "mango",
"papaya"}
set1.update(tropical)
print(set1)

{'apple', 'mango', 'cherry', 'pineapple', 'banana', 'papaya'}

68

• The object in the update() method does not have to be a set, it can be any
iterable object (tuples, lists, dictionaries etc.).

set1 = {"apple", "banana", "cherry"}
mylist = ["kiwi", "orange"]
set1.update(mylist)
print(set1)

{'banana', 'cherry', 'apple', 'orange', 'kiwi'}

69

Remove Item
• To remove an item in a set, use the remove(), or the discard() method.
• If the item to remove does not exist, remove() will raise an error.
• If the item to remove does not exist, discard() will NOT raise an error.

• To remove the last item use the pop() method. Sets are unordered, so when using the pop()
method, you do not know which item that gets removed.

set1 = {"apple", "banana", "cherry"}
set1.remove("banana")
print(set1)

{'apple', 'cherry'}

set1 = {"apple", "banana", "cherry"}
set1.discard("banana")
print(set1)

{'apple', 'cherry'}

70

• The clear() method empties the set.
• The del keyword will delete the set completely

set1 = {"apple", "banana", "cherry"}
del set1
print(set1)

Traceback (most recent call last):
 File "demo_set_del.py", line 5, in <module>
 print(thisset) #this will raise an error because the set no longer
exists
NameError: name 'thisset' is not defined

71

Join Two Sets
• You can use the union() method that returns a new set containing all items from

both sets, or the update() method that inserts all the items from one set into
another

• The update() method mentioned before.

set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}
set3 = set1.union(set2)
print(set3)

{3, 1, 'c', 'a', 'b', 2}

72

Computer Applications Lab

0907331

Lab Sheet 3: Lists, Tuples, and Dictionaries

Part 1: You are working at an electric car dealership, and you need to write a Python program to
help organize and analyze the cars available in the showroom.
Your task is to use lists to store, modify, sort, and analyze car data.

Tasks:

1. Create a list named cars containing the following car models:
["Tesla", "BYD", "BMW", "Kia", "Hyundai", "Nissan"]

Expected Output:
['Tesla', 'BYD', 'BMW', 'Kia', 'Hyundai', 'Nissan']

2. Print the total number of available cars.

Expected Output:
Total cars: 6

3. Add two new car models: "Toyota" and "Lucid".

Expected Output:
['Tesla', 'Lucid', 'BYD', 'BMW', 'Kia', 'Hyundai', 'Nissan', 'Toyota']

4. Replace "BMW" with "Rivian" (the dealership decided to focus on electric models only).

Expected Output:
['Tesla', 'Lucid', 'BYD', 'Rivian', 'Kia', 'Hyundai', 'Nissan',
'Toyota']

5. Remove "Kia" from the list.

Expected Output:
['Tesla', 'Lucid', 'BYD', 'Rivian', 'Hyundai', 'Nissan', 'Toyota']

6. Sort the list temporarily and display both the sorted list and the original one.

Expected Output:

Sorted list: ['BYD', 'Hyundai', 'Lucid', 'Nissan', 'Rivian', 'Tesla',
'Toyota']
Original list (unchanged): ['Tesla', 'Lucid', 'BYD', 'Rivian',
'Hyundai', 'Nissan', 'Toyota']

Prepared by: Eng. Alaa Arabiyat Page 1 of 7

7. Reverse the order of the original list and print it.

Expected Output:
['Toyota', 'Nissan', 'Hyundai', 'Rivian', 'BYD', 'Lucid', 'Tesla']

8. Copy the list to backup_cars.
Then, modify the first element in the original list to "Polestar" and print both lists.

Expected Output:

Original list: ['Polestar', 'Nissan', 'Hyundai', 'Rivian', 'BYD',
'Lucid', 'Tesla']
Backup list: ['Toyota', 'Nissan', 'Hyundai', 'Rivian', 'BYD', 'Lucid',
'Tesla']

9. Use slicing to:
o Print the first three car models.
o Print the last two models.
o Print every second car.

Expected Output:

First three: ['Polestar', 'Nissan', 'Hyundai']
Last two: ['Lucid', 'Tesla']
Every second: ['Polestar', 'Hyundai', 'BYD', 'Tesla']

10. Use a for loop to print each car model preceded by "Available model:".

Expected Output:

 Available model: Polestar
 Available model: Nissan
 Available model: Hyundai
 Available model: Rivian
 Available model: BYD
 Available model: Lucid
 Available model: Tesla

11. Create a list of car prices (in USD) corresponding to some models:
[55000, 48000, 72000, 60000, 45000]

Expected Output:
[55000, 48000, 72000, 60000, 45000]

12. Print the following statistics using built-in functions:
o The cheapest car price.
o The most expensive car price.
o The total value of all cars.
o The average price.

Prepared by: Eng. Alaa Arabiyat Page 2 of 7

Expected Output:

Cheapest price: 45000
Most expensive price: 72000
Total value: 280000
Average price: 56000.0

13. Use a loop to print each price and a message:
o "Luxury" if price ≥ 70000
o "Mid-range" if price between 50000 and 69999
o "Economy" if price < 50000

Expected Output:

55000 → Mid-range
48000 → Economy
72000 → Luxury
60000 → Mid-range
45000 → Economy

Part 2: You are developing a small smart home design system. Each room in the house has fixed
dimensions, materials, and furniture, so you decide to use tuples to ensure this data cannot be
accidentally changed.
Write a Python program that performs the following operations using tuples.

Tasks:

1. Define a tuple named living_room that contains the following data in order:
"Living Room", width 6, height 4, flooring material "wood", and furniture ("sofa",
"table", "lamp").
Then, print the room name and the last furniture item only.
Expected Output:

Room: Living Room
Last furniture: lamp

2. The house has three rooms stored in a tuple of tuples called rooms:

rooms = (
 ("Bedroom", 5, 3, "carpet"),
 ("Kitchen", 4, 3, "tile"),
 ("Living Room", 6, 4, "wood")
)

Use a for loop to print each room name and its flooring type in the format:
"Bedroom → carpet", "Kitchen → tile", etc.
Expected Output:

Prepared by: Eng. Alaa Arabiyat Page 3 of 7

Bedroom → carpet
Kitchen → tile
Living Room → wood

3. From the following tuple, print only the color "gray" without changing anything in the
tuple:

 design = ("wall colors", ("white", "gray", "blue"))

Expected Output:

gray

4. Given the tuple below, unpack it so that:
o length gets 5
o width gets 7
o others stores the rest of the values

Then print them all.

 dimensions = (5, 7, 8, 10, 12)

Expected Output:

length: 5
width: 7
others: (8, 10, 12)

5. You realize the original kitchen dimensions were wrong.
Try to modify the tuple directly (to change width = 5), then handle the resulting error by
creating a new tuple updated_kitchen with the corrected values.
Expected Output:

TypeError: 'tuple' object does not support item assignment
Updated kitchen: ('Kitchen', 5, 3, 'tile')

Part 3: You are developing a car inventory management system for an electric vehicle
dealership. Each car has multiple details like brand, model, price, and features.
You will use dictionaries (and sometimes lists) to store, update, and analyze this data efficiently.

Tasks:

1. Create a dictionary named car that contains the following key-value pairs:
o "brand" → "Tesla"
o "model" → "Model Y"
o "price" → 55000
o "features" → list containing ["autopilot", "long range", "panoramic

roof"]

Prepared by: Eng. Alaa Arabiyat Page 4 of 7

Then, print only the model name and the last feature without directly typing their values.
Expected Output:

Model: Model Y
Last feature: panoramic roof

2. You receive a new update with additional info in another dictionary:

 update_info = {"color": "white", "price": 53000}

Merge this update into the original dictionary using one statement,
then print the full dictionary sorted by its keys alphabetically (not manually).
Expected Output:

{'brand': 'Tesla', 'color': 'white', 'features': ['autopilot', 'long
range', 'panoramic roof'], 'model': 'Model Y', 'price': 53000}

3. Your dealership sells multiple cars stored in a nested dictionary:

cars = {
 "C101": {"brand": "Tesla", "price": 55000},
 "C102": {"brand": "BYD", "price": 32000},
 "C103": {"brand": "Lucid", "price": 85000}
}

Write a single loop that prints only the brand name of cars with a price greater than
50000.
Expected Output:

Tesla
Lucid

4. A customer asks to know which features Tesla offers.
Use the car dictionary from Task 1 to print all features,
each prefixed with "Feature → " in separate lines using a loop.
Expected Output:

Feature → autopilot
Feature → long range
Feature → panoramic roof

5. You realize "price" was stored incorrectly as a number but should be represented as a
string with “$” symbol.
Without retyping the value, convert and update it automatically.
Expected Output:

 Updated price: $53000

Prepared by: Eng. Alaa Arabiyat Page 5 of 7

Part 4: You are developing a small inventory management tool for a car workshop that stores all
available car parts. Since each part name must be unique and order doesn’t matter, you decide to
use Python sets to manage the data efficiently.

Tasks:

1. Create a set named parts containing the following items:
"engine", "wheel", "mirror", "seat", "wheel"
Then print the total number of unique parts, followed by the full set.

Expected Output:

Total unique parts: 4
{'seat', 'mirror', 'wheel', 'engine'} # order may vary

2. A new delivery arrives containing some additional parts stored in a list:
["door", "tire", "mirror", "bumper"]
Add all these parts to your existing set in one statement only, then print the updated set.

Expected Output:

{'seat', 'wheel', 'engine', 'mirror', 'door', 'tire', 'bumper'} # order
may vary

3. One part "door" was defective and should be removed. Use a method that won’t cause an
error even if the item is missing. Then, check if "roof" exists in the set before trying to
remove it. Print the final set after both operations.

Expected Output:

{'seat', 'wheel', 'engine', 'mirror', 'tire', 'bumper'} # order may vary

4. The workshop wants to separate electronic components in another set:
electronic_parts = {"sensor", "battery", "chip", "engine"}
Create a new set all_parts that merges both sets without modifying the originals,
then print both sets to verify.

 Expected Output:

{'sensor', 'seat', 'wheel', 'engine', 'mirror', 'chip', 'battery', 'tire',
'bumper'} # order may vary
{'seat', 'wheel', 'engine', 'mirror', 'tire', 'bumper'} # original
unchanged

5. Finally, update the original parts set directly with the electronic components,
then remove one random part from it using the proper method.Print both the removed
item and the final remaining set.

Prepared by: Eng. Alaa Arabiyat Page 6 of 7

Expected Output:

Removed: mirror # may vary
Remaining parts: {'sensor', 'seat', 'engine', 'wheel', 'battery', 'tire',
'chip', 'bumper'} # order may vary

Prepared by: Eng. Alaa Arabiyat Page 7 of 7

1

Control Flow and Error Exception

(CH5 and CH7)
Prepared by

Dr Mohammad Abdel-Majeed and Eng. Abeer Awad
(Converted to .odp and Modified by Dr Talal A. Edwan)

2

Outline
• Conditional statements: if, elif, and else.
• for loops.
• while loops.
• Errors and exceptions.

3

Conditional statements: if, elif, and
else.

if Statements
The simplest kind of if statement has one test and one action

if conditional_test:
do something

Notes:
1. You can put any conditional test in the first line and just about any action in the indented

block following the test. If the conditional test evaluates to True, Python executes the code
following the if statement. If the test evaluates to False, Python ignores the code following
the if statement.

age = 19
if age >= 18:
 print("you are old enough to vote")

you are old enough to vote

4

2. The print statement is supposed to be indented (one tab or four spaces). Indented lines will
be ignored if the test does not pass.

age = 17
if age >= 18:
 print("you are old enough to vote")
 print("Have you registered to vote yet?")

print("This statement will be always executed nevertheless the result of if
statement")

This statement will be always executed regardless of the result of if statement

5

• Python supports the usual logical conditions from mathematics
• Equals: a == b
• Not Equals: a != b
• Less than: a < b
• Less than or equal to: a <= b
• Greater than: a > b
• Greater than or equal to: a >= b

6

if-else Statements
if conditional_test:
do something
else:
 do something else

age = 17
if age >= 18:
 print("you are old enough to vote")
 print("Have you registered to vote yet?")
else:
 print("Sorry, you are too young to vote.")
 print("Please register to vote as soon as you turn 18!")

Sorry, you are too young to vote.
Please register to vote as soon as you turn 18!

7

The if-elif-else Chain
if conditional_test 1:

do something
elif conditional_test 2:

 do something else
else:

 do another thing

Note: you can use multiple elif statements and you can omit the else block

age = 12
if age <= 4:
 price = 0
elif age < 18:
 price = 5
else:
 price = 10
print("Your admission cost is :$" + str(price) + ".")

Your admission cost is :$5.

8

Testing Multiple Conditions
• The if- elif- else chain is powerful, but it’s only appropriate to use when you just need one test to pass. As soon

as Python finds one test that passes, it skips the rest of the tests. This behavior is beneficial, because it’s efficient
and allows you to test for one specific condition. However, sometimes it’s important to check all of the
conditions of interest. In this case, you should use a series of simple independent if statements with no elif or
else blocks.

requested_toppings = ['mushrooms', 'extra cheese']
if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")
if 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")
if 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")

print("\nFinished making your pizza!")

Adding mushrooms.
Adding extra cheese.

Finished making your pizza!

9

• We can use if statement to check if a list is not empty

requested_toppings =[]

if requested_toppings:
 print("some topping are requested")
else:
 print("you request nothing")

you request nothing

10

Short Hand If, If ... Else
• If you have only one statement to execute, you can put it on the same line as the

if statement, or the if … else statements.

• You can also have multiple else statements on the same line

if a > b: print("a is greater than b")

print("A") if a > b else print("B")

print("A") if a > b else print("=") if a == b else print("B")

11

Use and, or with if statements
• The and/or keywords are logical operators, and are used to combine conditional

statements

a = 200
b = 33
c = 500
if a > b and c > a:
 print("Both conditions are True")

a = 200
b = 33
c = 500
if a > b or a > c:
 print("At least one of the conditions is
True")

12

Nested if statement
• You can have if statements inside if statements, this is called nested if statements

x = 41

if x > 10:
 print("Above ten,")
 if x > 20:
 print("and also above 20!")
 else:
 print("but not above 20.")

Above ten,
and also above 20!

13

The pass Statement
• if statements cannot be empty, but if you for some reason have an if statement

with no content, put in the pass statement to avoid getting an error.

a = 33
b = 200

if b > a:
 pass

14

for loops
• Loops in Python are a way to repeatedly execute some code statement. We

specify the variable we want to use (N), the sequence we want to loop over
(iterator), and use the in operator to link them in an intuitive and readable way.

for N in iterator:
do something

for N in [2, 3, 5, 6]:
 print(N, end=" ")

2 3 5 6

15

• One of the most commonly used iterator in Python is the range object.
for N in range(10): # N=0,1,2,…,9
for N in range(4,30,2): #N=4,6,8,…,28

• If the iterator is a list, N will be the contents of the list.

Note: keep in mind when writing your own for loops that you can choose any name you want for the
temporary variable that holds each value in the list. However, it’s helpful to choose a meaningful name
that represents a single item from the list.

students = ['Ali', 'Ahmad', 'Yazan']
for N in students:
 print(N)

Ali
Ahmad
Yazan

students = ['Ali', 'Ahmad', 'Yazan']
for student in students:
 print(student)

16

➔ Forgetting to Indent

• Avoid Indentation Errors

students = ['Ali', 'Ahmad', 'Yazan']
for student in students:
print(student)

 print(student)
 ^
IndentationError: expected an indented block

students = ['Ali', 'Ahmad', 'Yazan']
for student in students:
 print("hello " ,student)
print("It's nice to meet you ", student)

hello Ali
hello Ahmad
hello Yazan
It's nice to meet you Yazan

➔ Forgetting to Indent
Additional Lines
(logical error)

- Indenting Unnecessarily

17

- Indenting Unnecessarily after the for loop

students = ['Ali', 'Ahmad', 'Yazan']
 print("hello world!")

 print("hello world!")
 ^
IndentationError: unexpected indent

students = ['Ali', 'Ahmad', 'Yazan']
for student in students:
 print("hello ", student)
 print('You are the best three students\n')

hello Ali
You are the best three students

hello Ahmad
You are the best three students

hello Yazan
You are the best three students

students = ['Ali', 'Ahmad', 'Yazan']
for student in students:
 print("hello ", student)
print('You are the best three students\n')

hello Ali
hello Ahmad
hello Yazan
You are the best three students

18

• For loops with dictionaries
• student is the keys in the

dictionary

• student is the elements in
the list

student1 = {'name':'Ali','grade':'95'}
student2 = {'name':'Ahmad','grade':'84'}
student3 = {'name':'Yazan','grade':'98'}
students = [student1, student2, student3]
for student in students:
 print(student)

{'name': 'Ali', 'grade': '95'}
{'name': 'Ahmad', 'grade': '84'}
{'name': 'Yazan', 'grade': '98'}

student1 = {'name':'Ali','grade':'95'}
for student in student1:
 print(student)

name
grade

19

➔ Use .items() to retrieve the
(key, value) pairs

➔ Specify which key to take
data from

student1 = {'name': 'Ali', 'grade':['95', '83']}
for N in student1['grade']:
 print(N)

95
83

student1 = {'name':'Ali','grade':'95'}
for key, value in student1.items():
 print(key, value)

name Ali
grade 95

20

The break Statement with for loop
• With the break statement we can stop the loop before it has looped through all

the items

• Exit the loop when x is "banana", but this time the break comes before the print

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 print(x)
 if x == "banana":
 break

apple
banana

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 if x == "banana":
 break
 print(x)

apple

21

epsilon = 0.001 # Small error threshold
x = 1.0 # Starting value of x

Loop to perform some calculation
for i in range(1, 100):
 x = x / 2 # Some operation that decreases the value of x
 print(f"Iteration {i}: x = {x}")

 if x < epsilon: # If x becomes smaller than epsilon, break the loop
 print(f"Breaking the loop at iteration {i} because x < epsilon")
 break

Example:

Iteration 1: x = 0.5
Iteration 2: x = 0.25
Iteration 3: x = 0.125
Iteration 4: x = 0.0625
Iteration 5: x = 0.03125
Iteration 6: x = 0.015625
Iteration 7: x = 0.0078125
Iteration 8: x = 0.00390625
Iteration 9: x = 0.001953125
Iteration 10: x = 0.0009765625
Breaking the loop at iteration 10
because x < epsilon

Output

Print method with string formatting options.

22

The continue statement with for loop
• With the continue statement we can stop the current iteration of the loop, and

continue with the next

fruits = ["apple", "banana", "cherry"]
for x in fruits:
 if x == "banana":
 continue
 print(x)

apple
cherry

23

for x in range(-2, 3): # Loop over values from -2 to +2 (inclusive)
 if x == 0:
 print("Skipping x = 0 to avoid division by zero")
 continue # Skip this iteration if x is 0

 fx = 1 / x # Compute 1/x
 print(f"f({x}) = {fx}")

Example:

f(-2) = -0.5
f(-1) = -1.0
Skipping x = 0 to avoid division by zero
f(1) = 1.0
f(2) = 0.5

Output

Print method with string formatting options.

24

Else in For Loop
• The else keyword in a for loop specifies a block of code to be executed when the

loop is finished

• The else block will NOT be executed if the loop is stopped by a break statement.

for x in range(6):
 print(x)
else:
 print("Finally finished!")

0
1
2
3
4
5
Finally finished!

for x in range(6):
 if x == 3: break
 print(x)
else:
 print("Finally finished!")

0
1
2

25

Nested for Loops
• A nested loop is a loop inside a loop.
• The "inner loop" will be executed one time for each iteration of the "outer loop"

adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:
 for y in fruits:
 print(x, y)

red apple
red banana
red cherry
big apple
big banana
big cherry
tasty apple
tasty banana
tasty cherry

26

Define a 3x3 matrix
matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Nested loops to print the matrix
for row in matrix: # Loop over each row
 for element in row: # Loop over each element in the row
 print(element, end=" ") # Print element with space, stay on same line
 print() # Move to the next line after printing a row

Example:

1 2 3
4 5 6
7 8 9

Output

27

The pass Statement with for loop
• for loops cannot be empty, but if you for some reason have a for loop with no

content, put in the pass statement to avoid getting an error

for x in [0, 1, 2]:
 pass

28

while loops.
Introducing while Loops
• The for loop takes a collection of items and executes a block of code once for each item

in the collection. In contrast, the while loop runs as long as, or while, a certain condition
is true.

Notes:
• The used variable must be defined before the loop.
• The loop keeps testing if the boolean condition is true, it keeps executing the

loop statements.
• The used variable must be changed inside the loop, or infinite loop will occur

current_number = 1
while current_number <= 5:
 print(current_number)
 current_number += 1

1
2
3
4
5

29

• Letting the User Choose When to Quit

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "
message = ""
while message != 'quit':
 message = input(prompt)
 print(message)

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. hello
hello

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. welcome to python
welcome to python

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit
quit

30

• Using a Flag

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "
active = True
while active:
 message = input(prompt)

 if message == 'quit':
 active = False
 else:
 print(message)

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. hello
hello

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit

31

• Using break to Exit a Loop

prompt = "\nPlease enter the name of a city you have visited:"
prompt += "\n(Enter 'quit' when you are finished.) "
while True:
 city = input(prompt)

 if city == 'quit':
 break
 else:
 print("I'd love to go to " + city.title() + "!")

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) amman
I'd love to go to Amman!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) jerusalem
I'd love to go to Jerusalem!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) quit

32

• Using continue in a Loop

current_number = 0
while current_number < 10:
 current_number += 1
 if current_number % 2 == 0:
 continue

 print(current_number)

1
3
5
7
9

Skip even numbers.

33

The else Statement
• With the else statement we can run a block of code once when the condition no longer

is true

i = 1
while i < 6:
 print(i)
 i += 1
else:
 print("i is no longer less than 6")

1
2
3
4
5
i is no longer less than 6

34

• Removing All Instances of Specific Values from a List

pets = ['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']

print(pets)

while 'cat' in pets:
 pets.remove('cat')

print(pets)

['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']
['dog', 'dog', 'goldfish', 'rabbit']

35

• Filling a Dictionary with User Input
responses = {}
Set a flag to indicate that polling is active.
polling_active = True
while polling_active:
 # Prompt for the person's name and response.
 name = input("\nWhat is your name? ")
 response = input("Which mountain would you like to climb
 someday? ")

 # Store the response in the dictionary:
 responses[name] = response

 # Find out if anyone else is going to take the poll.
 repeat = input("Would you like to let another person
respond? (yes/ no) ")
 if repeat == 'no':
 polling_active = False

Polling is complete. Show the results.
print("\n--- Poll Results ---")
for name, response in responses.items():
 print(name + " would like to climb " + response + ".")

What is your name? Ali
Which mountain would you like to climb
someday? Everest
Would you like to let another person
respond? (yes/ no) yes

What is your name? Yazan
Which mountain would you like to climb
someday? Elbrus
Would you like to let another person
respond? (yes/ no) no

--- Poll Results ---
Ali would like to climb Everest.
Yazan would like to climb Elbrus.

36

• Filling a Dictionary with User Input

37

Using a while Loop with Lists and Dictionaries
• Moving Items from One List to Another

unconfirmed_users = ['alice', 'brian', 'candace']
confirmed_users = []

while unconfirmed_users:
 current_user = unconfirmed_users.pop()

 print("Verifying user: " + current_user.title())
 confirmed_users.append(current_user)
print("\nThe following users have been confirmed:")
for confirmed_user in confirmed_users:
 print(confirmed_user.title())

Verifying user: Candace
Verifying user: Brian
Verifying user: Alice

The following users have been confirmed:
Candace
Brian
Alice

38

Using a while Loop with Lists and Dictionaries
• Moving Items from One List to Another

39

Errors and exceptions
Errors
No matter your skill as a programmer, you will eventually make a coding mistake.

Such mistakes come in three basic flavours:
1. Syntax errors

Errors where the code is not valid Python (generally easy to fix)
2. Runtime errors

Errors where syntactically valid code fails to execute, perhaps due to
invalid user input (sometimes easy to fix)

3. Semantic errors
Errors in logic: code executes without a problem, but the result
is not what you expect (often very difficult to identify and fix)

40

Run time errors

print(1 + 'abc')

Traceback (most recent call last):
 File "main.py", line 1, in <module>
 print(1 + 'abc')
TypeError: unsupported operand type(s) for
+: 'int' and 'str'

print(Q)

Traceback (most recent call last):
 File "main.py", line 1, in <module>
 print(Q)
NameError: name 'Q' is not defined

41

L= [1, 2, 3]
print(L[100])

Traceback (most recent call last):
 File "main.py", line 2, in <module>
 print(L[100])
IndexError: list index out of range

print(3/0)
Traceback (most recent call last):
 File "main.py", line 1, in <module>
 print(3/0)
ZeroDivisionError: division by zero

Run time errors

42

Catching Exceptions: try and except
• The main tool Python gives you for handling runtime exceptions is the try…except

clause. Its basic structure is this:
try:

print("this gets executed first")

except:

print("this gets executed only if there is an error")

x = int(input('enter X: '))
y = int(input('enter Y: '))
try:
 print(x/y)
except:
 print('something wrong happened!')

enter X: 10
enter Y: 5
2.0

enter X: 10
enter Y: 0
something wrong happened!

43

• try…except…else…finally
try:

print("try something here")
except:

print("this happens only if it fails")
else:

print("this happens only if it succeeds")
finally:

print("this happens no matter what")

x = int(input('enter X: '))
y = int(input('enter Y: '))
try:
 Z = x/y
except:
 print('something wrong happened!')
else:
 print(Z)
finally:
 print('be careful with dividing numbers')

enter X: 10
enter Y: 5
2.0
be careful with dividing numbers

enter X: 10
enter Y: 0
something wrong happened!
be careful with dividing numbers

44

Many Exceptions
• You can define as many exception blocks as you want, e.g., if you want to execute

a special block of code for a special kind of error.
try:
 print(x)
except NameError:
 print("Variable x is not defined")
except:
 print("Something else went wrong")

Variable x is not defined

Note the “:” is not after “except”.

45

Raise an exception
• As a Python developer, you can choose to throw an exception if a condition

occurs.
• To throw (or raise) an exception, use the raise keyword, you can define what kind

of error to raise, and the text to print to the user.

x = -1
if x < 0:
 raise Exception("Sorry, no numbers below zero")

Traceback (most recent call last):
 File "demo_ref_keyword_raise.py", line 4, in
<module>
 raise Exception("Sorry, no numbers below
zero")
Exception: Sorry, no numbers below zero

x = "hello"
if not type(x) is int:
 raise TypeError("Only integers are allowed")

Traceback (most recent call last):
 File "demo_ref_keyword_raise2.py", line 4, in
<module>
 raise TypeError("Only integers are allowed")
TypeError: Only integers are allowed

46

Raise an exception
• As a Python developer, you can

choose to throw an exception if
a condition occurs.
• To throw (or raise) an

exception, use the raise
keyword, you can define what
kind of error to raise, and the
text to print to the user.

Computer Applications Lab
0907331

Lab Sheet 4: Control Flow and Error Exception

Part 1: You are developing an automated system for an electric car workshop that analyzes
service requests and provides maintenance decisions based on several factors.

Tasks:

Step 1 — Create the following variables:

battery_level = 18
temperature = 38
is_electric = True
has_warranty = False

Write an if-elif-else structure that:

 Prints "Low battery – charge immediately!" if the battery is below 20.
 If not, checks if temperature is above 35 → print "Warning: high temperature

detected!".
 Otherwise, prints "Battery and temperature are normal."

Then, within the same logic, add another conditional check related to the car type and warranty:

 If the car is electric:
o Print a message that depends on whether it still has a valid warranty or not.

 If the car is not electric:
o Print a message indicating that the service is only for electric cars.

Expected Output:

Low battery – charge immediately!
Maintenance cost applies.

Step 2 — Create the following variables:

battery_health = 60
has_discount = False
is_vip = True
diagnostic_codes = []
owner_name = "Ali"
service_notes = ""
has_id = True
payment_done = False

Write code that performs several checks and decisions:

Prepared by: Eng. Alaa Arabiyat Page 1 of 5

1. Analyze the battery condition and print a message if a replacement is needed.
2. Determine whether the customer qualifies for a discount using logical operators (or,

and).
3. Use truthy and falsy value checks (not len()) to print appropriate messages based on

whether diagnostic codes, owner name, or service notes exist or are empty.
4. Finally, use a one-line (inline) if-else expression to decide whether the car entry is

"Approved" or "Rejected" based on having both an ID and a completed payment, then
print the result.

Expected Output:

Battery replacement needed.
Discount applied.
No diagnostic codes found.
Owner name available.
Missing service notes.
Car entry status: Rejected

Part 2: You are designing a smart logging system for a car workshop that tracks both employee
attendance and car maintenance records throughout the day.
The program will process various lists, sets, and dictionaries using different types of loops and
logical controls.

Tasks:

Step 1 — Attendance Tracking System

At the start of the day, the workshop records the names of employees who checked in.
You have the following data:

registered_staff = ["Ali", "Ahmad", "Sara", "Yazan", "Rania"]
checked_in = ["Ali", "Sara", "Rania"]
late_staff = []

You also have a set that stores staff who requested day off:

day_off = {"Ahmad"}

And a variable to track if the door sensor system is active:

system_active = True

Write a program that performs the following tasks:

 Go through all registered staff and determine who checked in, who is late, and who has a
day off.

Prepared by: Eng. Alaa Arabiyat Page 2 of 5

 If the system is inactive, stop processing immediately and print a message that indicates
the system failed.

 Skip any staff who officially have a day off without printing them in the results.
 Add late staff to the late_staff list dynamically while looping.
 After processing everyone, print a summary of total checked-in, late, and off-day staff

using formatted output.
 Use at least one for-else or break/continue logic meaningfully during the process.

The logic should be robust enough to handle possible future expansion (e.g., adding new staff
names).

Expected Output:

Checked-in: Ali
Checked-in: Sara
Checked-in: Rania
Late: Yazan
Summary:
- Checked-in staff: 3
- Late staff: 1
- Day-off staff: 1

Step 2 — Maintenance Task Logger

At the end of the day, the workshop’s digital system keeps track of completed maintenance tasks
in a dictionary:

maintenance_log = {
 "E-Car001": ["battery check", "tire rotation"],
 "E-Car002": ["diagnostic test", "sensor calibration"],
 "E-Car003": []
}

Additional data:

completed_tasks = set()
urgent_cases = ["E-Car002"]
task_count = 0

Your program must:

 Loop through all cars and print each car ID and its tasks one by one, labeling those with
no tasks as "No maintenance performed".

 If a car appears in urgent_cases, print a warning message and immediately stop logging
further cars.

 Use a nested loop to process each task for the current car, and add all completed task
names to the completed_tasks set to ensure uniqueness.

 After logging ends, display the total number of cars processed and total unique tasks done
using a clear formatted summary.

Prepared by: Eng. Alaa Arabiyat Page 3 of 5

 If no cars were processed (for example, if the first was urgent), print a message
explaining that the system stopped early.

Expected Output (if urgent case occurs after first car):

Car ID: E-Car001
 - battery check
 - tire rotation
⚠ ️Urgent maintenance detected for E-Car002! Stopping the logging process...
Summary:
- Cars processed: 1
- Unique completed tasks: 2

Expected Output (if no urgent case is triggered):

Car ID: E-Car001
 - battery check
 - tire rotation
Car ID: E-Car002
 - diagnostic test
 - sensor calibration
Car ID: E-Car003
 - No maintenance performed
Summary:
- Cars processed: 3
- Unique completed tasks: 4

Part 3: A car company is testing a smart diagnostic program that analyzes sensor data and user
inputs to detect possible malfunctions and handle unexpected system errors.
Design a Python program that simulates a diagnostic test for an electric car system where
multiple types of errors may occur.
Your program should:

 Ask the user to enter the battery temperature and the charging voltage.
o If the input is not a valid number, handle it properly.
o If the entered value is below logical limits (e.g., negative temperature or voltage),

trigger a custom error manually.
 Then, attempt to compute a diagnostic ratio that divides voltage by temperature.

o Handle any possible runtime errors (like division by zero).
 Simulate retrieving additional sensor data from a dictionary (e.g., "speed", "pressure",

"battery_status").

sensor_data = {
 "speed": 80,
 "pressure": 32,
 "battery_status": "Good"
}

o If a missing key is accessed, handle that case gracefully.

Prepared by: Eng. Alaa Arabiyat Page 4 of 5

 Include at least one situation that could raise a TypeError or IndexError naturally, and
handle them in a professional way.

 Use a try–except–else–finally structure to organize your code, ensuring that:
o The else block only runs when no errors occur.
o The finally block always runs to print "System check completed." regardless

of errors.
 If all checks pass successfully, display a clear summary message showing the computed

diagnostic ratio and confirming that no system errors were detected.

Expected Output Examples

Case 1 — Successful execution:

Enter battery temperature: 40
Enter charging voltage: 12
Diagnostic ratio (voltage/temperature): 0.3
Sensor data retrieved successfully.
No system errors detected.
System check completed.

Case 2 — Invalid number input:

Enter battery temperature: abc
Oops! That's not a valid number.
System check completed.

Case 3 — Negative value triggers custom error:

Enter battery temperature: -5
Enter charging voltage: 12
Error: Invalid input! Values cannot be negative.
System check completed.

Case 4 — Division by zero runtime error:

Enter battery temperature: 0
Enter charging voltage: 12
Cannot divide by zero! Check sensor inputs.
System check completed.

Case 5 — Missing sensor key handled:

Enter battery temperature: 25
Enter charging voltage: 12
Diagnostic ratio (voltage/temperature): 0.48
Warning: Sensor 'temperature_sensor' not found!
System check completed.

Prepared by: Eng. Alaa Arabiyat Page 5 of 5

1

Functions & Files
Prepared by

Dr Mohammad Abdel-Majeed, Eng. Abeer Awad and Ayah
Alramahi

(Converted to .odp and Modified by Dr Talal A. Edwan)

2

Outline

• Functions
• Files

3

Functions
Defining a function
• A function is a block of code which only runs when it is called.
• You can pass data, known as parameters or arguments, into a function.
• A function can return data as a result.
• Function Definition
 def function_name(function parameters):

function_definition = 4 spaces
 Function Call
 function_name(arguments)
• function definitions cannot be empty, but if you for some reason have a function

definition with no content, put in the pass statement to avoid getting an error.

4

def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Hello!

Defining a function-Example

Docstring

A Docstring is a
string literal that
occurs as the
first statement
in a module,
function, class,
or method
definition.

5

def greet_user(name):
 """Display a simple greeting."""
 print("\nHello " + name + "!")

greet_user("Ahmad")

Hello Ahmad!

Function with arguments
• A function must be called with the correct number of arguments. Meaning that if

your function expects 2 arguments, you have to call the function with 2
parameters, not more, and not less.

BUT

6

Passing Arguments
• Python must match each argument in the function call with a parameter in the

function definition
• Positional Arguments: Pairing the arguments with values based on the order of

the arguments provided, Order Matters.

def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print("\nI have a " + animal_type + ".")
 print("My " + animal_type + "'s name is " + pet_name.title() + ".")

describe_pet('hamster', 'harry')

I have a hamster.
My hamster's name is Harry.

7

Passing Arguments
• Keyword Arguments: pass the name-value pair to the function

I have a hamster.
My hamster's name is Harry.

I have a hamster.
My hamster's name is Harry.

def describe_pet(animal_type, pet_name):
 """Display information about a pet."""
 print("\nI have a " + animal_type + ".")
 print("My " + animal_type + "'s name is " + pet_name.title() + ".")

#Positional Argument
describe_pet('hamster', 'harry')

#Keyword Arguments
describe_pet(animal_type='hamster', pet_name= 'harry')

Keyword Arguments
are sometimes called
Named Arguments.

8

Parameter’s Default Values
• If an argument for a parameter is provided in the function call, Python uses the

argument value. If not, it uses the parameter’s default value
• Default parameters should be listed at the end of the parameters list

def describe_pet(pet_name = "harry", animal_type ="dog"):
 """Display information about a pet."""
 print("\nI have a " + animal_type + ".")
 print("My " + animal_type + "'s name is " + pet_name.title()+".")

#Positional Argument
describe_pet('harry')

#Keyword Arguments
describe_pet(pet_name= 'harry')

I have a dog.
My dog's name is Harry.

I have a dog.
My dog's name is Harry.

9

Return Values
• The value the function returns is called a return value
• The return statement takes a value from inside a function and sends it back to

the line that called the function.
• Returned value can be a list, dictionary, Boolean, string, etc.

def get_fullname(first_name, last_name):
 """Return a full name, nestly formatted."""
 full_name = first_name + ' ' + last_name
 return full_name.title()

FullName = get_fullname('Mohammad', 'Ahmad')
print(FullName)

Mohammad Ahmad

10

def greet_users(names):
 """Print a simple greeting to each user in the list."""
 for name in names:
 msg = "Hello, " + name.title() + "!"
 print(msg)

username = ['hannah', 'ty', 'margot']
greet_users(username)

Hello, Hannah!
Hello, Ty!
Hello, Margot!

Passing a List

11

Modifying a List in a Function
• When you pass a list to a function, the function can modify the list.
• Any changes made to the list inside the function’s body are permanent

def add_user(names, new_user):
 """Print a simple greeting to each user in the list."""
 names.append(new_user)

usernames = ['hannah', 'ty', 'margot']
add_user(usernames, 'Tylor')

print(usernames)

['hannah', 'ty', 'margot', 'Tylor']

12

Preventing a Function from Modifying a List
• Pass to the function a copy of the list
• Use Slicing

def users(names):
 """Print a simple greeting to each user in the list."""
 names[0] = 'Tylor'

usernames = ['hannah', 'ty', 'margot']
users(usernames[:])

print(usernames)

['hannah', 'ty', 'margot']

13

Passing Arbitrary Number of Arguments
• If you do not know how many arguments that will be passed into your function,

add a * before the parameter name in the function definition.

def make_pizza(*toppings):
 """Print the list of toppings that have been requested."""
 print(toppings)

make_pizza('pepperoni')
make_pizza('mushrooms', 'green peppers', 'extra cheese')

('pepperoni',)
('mushrooms', 'green peppers', 'extra cheese')

14

• With arbitrary arguments the function will receive a tuple of
arguments, and can access the items accordingly

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

The youngest child is Linus

15

def make_pizza(size, *toppings):
 """Summarize the pizza we are about to make."""
 print("\nMaking a " + str(size) +
 "-inch pizza with the following toppings:")
 for topping in toppings:
 print("- " + topping)

make_pizza(16, 'pepperoni')
make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese')

Making a 16-inch pizza with the following toppings:
- pepperoni

Making a 12-inch pizza with the following toppings:
- mushrooms
- green peppers
- extra cheese

Mixed Arguments

16

Mixed Arguments

Python expects
toppings to be

passed as
positional

arguments only.

wrong

wrong

wrong

wrong
correct

17

def build_profile(first, last, **user_info):
 """Build a dictionary containing everything we know about a user."""
 profile = {}
 profile['first_name'] = first
 profile['last_name'] = last
 for key, value in user_info.items():
 profile[key] = value
 return profile
user_profile = build_profile('albert', 'einstein',
 location='princeton', field='physics')
print(user_profile)

{'first_name': 'albert', 'last_name': 'einstein', 'location':
'princeton', 'field': 'physicAs'}

Using Arbitrary Keyword Arguments
• If you do not know how many keyword arguments that will be passed into your

function, add two asterisk: ** before the parameter name in the function
definition. This way the function will receive a dictionary of arguments, and can
access the items accordingly

18

Storing Your Function in Modules
• Storing your functions in a separate file called a module and then importing that

module into your main program.
• An import statement tells Python to make the code in a module available in the

currently running program file.

19

Importing an Entire Module
• A module is a file ending in .py that contains the code you want to import into

your Functions program.
• We created a file called Pizza.py and placed the function make_pizza() inside it.

def make_pizza(size, *toppings):
 """Summarize the pizza we are about to make."""
 print("\nMaking a " + str(size) + "-inch pizza with the
following toppings:")
 for topping in toppings:
 print("- " + topping)

20

Importing an Entire Module
• A module is a file ending in .py that contains the code you want to import into

your Functions program.
• We created a file called Pizza.py and placed the function make_pizza() inside it.
• To be able to use this function we imported the Pizza.py module
• We call the function using the module_name.function_name()

import Pizza
Pizza.make_pizza(12,"mashroom")

21

Using “as” to Give a Module an Alias

import Pizza as P
P.make_pizza(12,"mashroom")

22

Importing Specific Function
• You can also import a specific function from a module not the entire module
 from module_name import function_nam
 from module_name import function_0, function_1, function_2

from Pizza import make_pizza
make_pizza(12,"mashroom")

23

Using “as” to Give a Function an Alias

from Pizza import make_pizza as mp
mp(12,"mashroom")

24

Importing All Functions in a Module

from Pizza import *
make_pizza(12,"mashroom")

25

Example: Generate a 2D Random Matrix

Right justified with total length of 4:
Example: "7".rjust(4) → " 7" (3 spaces + 7 → total width = 4)

26

Example: Generate a 2D Random Matrix (cont.)

Right justified with total length of 4:
Example: "7".rjust(4) → " 7" (3 spaces + 7 → total width = 4)

27

Lambda function
• A lambda function can take any number of arguments, but can only have one

expression.

 lambda arguments : expression

• The power of lambda is better shown when you use them as an anonymous
function inside another function.

x = lambda a : a*3
print(x(5))

15

def myfunc(n):
 return lambda a : a * n

mydoubler = myfunc(2)
print(mydoubler(11))

22

28

Example:
• A lambda function that multiplies argument a with argument b and print the

result:

x = lambda a, b: a * b
print(x(5,4))

20

29

Files
Reading from a File
• When you want to work with the information in a text file, the first step is to read

(load) the file into memory. You can read the entire contents of a file, or you can
work through the file one line at a time.
• You should open the file before accessing it.
• open(filename) function looks for the file in the current directory.
• close() function closes the file: improperly closed files can cause data loss

file_obj = open('data.txt')
print(file_obj.read())
file_obj.close()

30

• There are four different methods (modes) for opening a file
"r" - Read - Default value. Opens a file for reading, error if the file does not exist
"a" - Append - Opens a file for appending, creates the file if it does not exist
"w" - Write - Opens a file for writing, creates the file if it does not exist
"x" - Create - Creates the specified file, returns an error if the file exists

• In addition you can specify if the file should be handled as binary or text mode
"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

31

Read Only Parts of the File
• By default the read() method returns the whole text, but you can also specify

how many characters you want to return

• You can return one line by using the readline() method

• By calling readline() two times, you can read the two first lines

f = open("file.txt", "r")
print(f.read(5))# read five characters

f = open("file.txt", "r")
print(f.readline()) # read the first line

32

• By looping through the lines of the file, you can read the whole file, line by line

f = open("file.txt", "r")
for x in f:
 print(x) # remember: inserts a new line by default
f.close()

33

Reading from a File—with Keyword
• with keyword closes the file once access to it is no longer needed

with open('data.txt') as file_object:
 contents = file_object.read()
 print(contents)

34

File Path
• If the file is not in the same folder of the currently running python program then

you need to provide the file path (use forward slash in windows if backslash does
not work)
with open(r'C:/Users/mohammad/data.txt')
as file_object:
 contents = file_object.read()
 print(contents)

Random data

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.read()
 print(contents)

35

36

Reading Line by Line
• You can use a for loop on the file object to examine each line from a

file one at a time

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 for L in file_object:
 print(L)

37

Reading the text file as a one string
• What is the output for each code?

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.read()
 for L in file_object:
 print(L)

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.read()
 for L in contents:
 print(L)

file_object: points to the
end of the file.
output: nothing.

file_object: points to the end of
the file.
contents: has the data of the
text file as one string.
output: print each character of
the string contents.

38

• What is the output for each code?

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.read()
 for L in contents[0:2]:
 print(L)

file_object: points to the
end of the file.
contents: has the data of the
text file as one string.
output: print the characters
of the string contents with
index 0 and 1.

39

Making a list of lines from a File
• If you want to retain access to a file’s contents outside the with block,

you can store the file’s lines in a list inside the block and then work
with that list.

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.readlines()

for L in contents:
 print(L)

Random Data Line0

Random Data Line1

Random Data Line2

Random Data Line3

Random Data Line4

List

40

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.readlines()

for L in contents:
 print(L.strip())

Random Data Line0
Random Data Line1
Random Data Line2
Random Data Line3
Random Data Line4

Strip Functions

41

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 contents = file_object.readlines()

One_Line= ' '
for L in contents:
 One_Line += ' ' + L.strip()

print(One_Line)

 Random Data Line0 Random Data Line1 Random Data Line2 Random Data Line3 Random Data Line4

42

Writing to a File
Writing to a File
• To write text to a file, you need to call open() with a second argument telling

Python that you want to write to the file.
• Set the second argument of the open() function to ‘w’ to open the file in the

write mode.
• ‘a’ → Opens the file in append mode.
• ‘r’ → Opens the file in read mode.

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath, 'w ') as file_object:
 file_object.write('Random Data Line 5 ')

with open(filepath) as file_object:
 print(file_object.read()) Random Data Line 5

The other old lines
in the file disappear.

43

• The open() function automatically creates the file you’re writing to if it doesn’t
already exist. However, be careful opening a file in write mode ('w') because if
the file does exist, Python will erase the file before returning the file object.

filepath = 'C:/Users/mohammad/data.txt'
with open(filepath) as file_object:
 print('The Content of the file before opening it for write:\n '
+file_object.read())

with open(filepath, 'w') as file_object:
 print('File opened for write:\n ' (

with open(filepath) as file_object:
 print('The Content of the file before opening it for write:\n ')
+file_object.read())

The Content of the file before opening it for write:
Random Data Line 0
File opened for write:

'The Content of the file before opening it for write:

44

The Content of the file after writing:
Random Data Line 0 Random Data Line 1

filepath = 'C:/Users/mohammad/data.txt'

with open(filepath, 'w') as file_object:
 file_object.write(' Random Data Line 0')
 file_object.write(' Random Data Line 1')

with open(filepath) as file_object:
 print('The Content of the file after writing:\n ')
+file_object.read())

45

The Content of the file after appending:
Random Data Line 0
Random Data Line 1
The Content of the file after appending:
Random Data Line 0
Random Data Line 1
Random Data Line 2
Random Data Line 3

filepath = 'C:/Users/mohammad/data.txt'

with open(filepath) as file_object:
 print('The Content of the file before appending:\n ') +file_object.read())

with open(filepath, 'a') as file_object:
 file_object.write('\nRandom Data Line 2\n ')
 file_object.write('Random Data Line 3')

with open(filepath) as file_object:
 print('The Content of the file after appending:\n ') +file_object.read())

Writing to a file--append

46

Exceptions Handling Using try-except Blocks
• You tell Python to try running some code, and you tell it what to do if the code

results in a particular kind of exception.

try:
#Code goes here

except:
#what to do in case the code inside the try block created an exception

47

Handling the FileNotFoundError Exception
• One common issue when working with files is handling missing files

• Different location
• Filename misspelled
• File may not exist at all

filepath = 'C:/Users/mohammad/data1.txt'

with open(filepath) as file_object:
 print('The Content of the file before appending:\n ') +file_object.read())

with open(filepath) as file_object:
 FileNotFOundError:[Errno 2] No such file or
directory : 'C:/Users/mohammad/data1.txt'

48

The file C:/Users/mohammad/data1.txt is not found

filepath = 'C:/Users/mohammad/data1.txt'

try:
 with open(filepath) as file_object:
 print('The Content of the file before appending:\n ')
+file_object.read())

Except FileNotFOundError:
 print('The file ' + filepath + ' is not found'

49

Random Data Line 0
Random Data Line 1
Random Data Line 2
Random Data Line 3

filepath = 'C:/Users/mohammad/data.txt'

try:
 with open(filepath) as file_object:
 content = file_object.read()

except FileNotFoundError:
 print('The file ' + filepath + ' is not found '

else:
 print(content)

50

done

filepath = 'C:/Users/mohammad/data.txt'

try:
 with open(filepath) as file_object:
 content = file_object.read()

except FileNotFoundError:
 pass

else:
 print(content)

print('done')

Failing Silently Using pass

51

import os
os.remove("file.txt")

• Delete a File
• To delete a file, you must import the OS module, and run its os.remove() function

• Check if File exist: To avoid getting an error, you might want to check if the file
exists before you try to delete it

import os
if os.path.exists("file.txt"):
 os.remove("demofile.txt")
else:
 print("The file does not exist")

52

Storing Data

• Sometimes you need to store the information users provide in data structures
such as lists and dictionaries.
• When users close a program, you’ll almost always want to save the information

they entered.
• A simple way to do this involves storing your data using the json module.

A JSON file is a text file that
contains data in JavaScript
Object Notation (JSON)
format — a lightweight,
human-readable format for
storing and exchanging
structured data.

53

Example of JSON file:

54

import json
numbers = [2, 3, 5, 7, 11, 13]
filepath =
'C:/Users/mohammad/numbers.json'
with open(filepath, 'w') as file_object:
 json.dump(numbers, file_object)

with open(filepath, ‘r') as file_object:
 print(json.load(file_object))

[2, 3, 5, 7, 11, 13]

import json
numbers = [2, 3, 5, 7, 11, 13]
filepath = 'C:/Users/mohammad/numbers.json'
with open(filepath, 'w') as file_object:
 json.dump(numbers, file_object)

with open(filepath, 'r') as file_object:
 x = json.load(file_object)
 print(x[3])

7

json.dump() and json.load()

Prepared by: Eng. Alaa Arabiyat Page 1 of 4

Computer Applications Lab

0907331

Lab Sheet 5: Functions & Files

Part 1:

You are tasked with designing a Python program for a smart car workshop that manages

employee greetings, task assignments, food orders, and task efficiency. The program should

involve function definitions, positional and default arguments, ***args and kwargs, lambda

functions, and module imports.

Step 1 — Staff Greeting System

 Design a function that takes an employee’s name and prints a personalized greeting

message.

 Design a second function that accepts any number of employee names and uses the first

function to greet each one.

 Call the second function with at least three employee names.

Expected Output:

Hello Ali!

Hello Sara!

Hello Hamza!

Step 2 — Task Assignment and Calculation

 Design a function to assign tasks to employees. It should take the task name, the

employee’s name, and a priority level (use a default value if not specified).

 The function should print the assigned task and its priority, and return the task

information in an appropriate data structure (e.g., a dictionary).

 Call the function twice: once using the default priority and once with a custom priority.

 Design a small function or a lambda function that calculates the estimated hours to

complete a task using a multiplication factor.

Expected Output:

Assigning task: Oil Change to Ali with priority Normal

Task Info: {'task': 'Oil Change', 'assigned_to': 'Ali', 'priority': 'Normal'}

Assigning task: Tire Rotation to Sara with priority High

Task Info: {'task': 'Tire Rotation', 'assigned_to': 'Sara', 'priority':

'High'}

Estimated time for task: 6 hours

Step 3 — Workshop Dessert Order Module

Prepared by: Eng. Alaa Arabiyat Page 2 of 4

 There is a module dedicated to dessert operations, containing functions for printing

dessert type, adding ingredients, baking, and delivering.

 Import the module using an alias.

 Order a dessert with a specific type and multiple ingredients, then bake and deliver it

using the module functions.

Expected Output:

Preparing a Chocolate Cake with the following ingredients:

- chocolate

- strawberries

Baking the dessert... Please wait!

Dessert is on the way to your home!

Step 4 — Staff Task Efficiency Calculator

 Design a function that accepts a multiplier for an employee. This multiplier adjusts task

duration based on their efficiency (for example, >1 means slower, <1 means faster).

 The function should return a lambda function that calculates total hours for a task using

the formula:

 total_hours = base_hours * multiplier

 Create two separate efficiency calculators for two different employees using this

function.

 Compute the estimated hours for two tasks using these calculators.

 Print a summary showing the employee, the task, and the calculated hours.

Expected Output:

Ali's task estimated hours: 8

Sara's task estimated hours: 15

Part 2:

You are tasked with designing a Python program for a smart car workshop to manage file

operations, record keeping, and error handling. The program should involve reading from files,

writing and appending data, handling exceptions, and processing text data.

The data file for this assignment is named:

workshop_log.txt

Content of workshop_log.txt:

Monday: Oil Change, Tire Rotation

Prepared by: Eng. Alaa Arabiyat Page 3 of 4

Tuesday: Battery Check, Sensor Calibration

Wednesday: Engine Diagnostic

Thursday: Car Wash

Friday: Brake Inspection, Tire Alignment

Step 1 — Reading and Summarizing File Content

 Open and read the entire content of workshop_log.txt as a single string.

 Print a clear message with the full content.

 Then, read the file line by line, storing each line in a list.

 Loop over the list and print each day’s tasks individually, removing any extra spaces or

newline characters.

 Finally, combine all tasks into one single string and print it.

Expected Output (illustrative):

== Full content of the file ==

Monday: Oil Change, Tire Rotation

Tuesday: Battery Check, Sensor Calibration

Wednesday: Engine Diagnostic

Thursday: Car Wash

Friday: Brake Inspection, Tire Alignment

== Individual day tasks ==

Monday: Oil Change, Tire Rotation

Tuesday: Battery Check, Sensor Calibration

Wednesday: Engine Diagnostic

Thursday: Car Wash

Friday: Brake Inspection, Tire Alignment

== All tasks combined ==

Monday: Oil Change, Tire Rotation Tuesday: Battery Check, Sensor Calibration

Wednesday: Engine Diagnostic Thursday: Car Wash Friday: Brake Inspection,

Tire Alignment

Step 2 — Writing and Appending New Entries

 Open the file in write mode and replace its content with two new log entries for the

weekend (Saturday and Sunday).

 Print the file content to verify the update.

 Then, open the file in append mode and add two more tasks for Monday of the next

week.

 Print the file content again to verify that the new lines were added without deleting

existing ones.

Expected Output (illustrative):

== File content after writing new entries ==

Saturday: Air Filter Replacement

Sunday: Car Detailing

Prepared by: Eng. Alaa Arabiyat Page 4 of 4

== File content after appending ==

Saturday: Air Filter Replacement

Sunday: Car Detailing

Monday: Tire Rotation

Monday: Oil Change

Step 3 — Handling Missing Files and Deleting

 Simulate accessing a file that may not exist. Use exception handling to catch

FileNotFoundError and print a friendly message if the file is missing.

 If the file exists, read and print its content.

 Finally, check if the file exists and delete it safely, printing a confirmation message if

deletion succeeded or a message if the file was not found.

Expected Output (illustrative if file exists):

Reading file content:

Saturday: Air Filter Replacement

Sunday: Car Detailing

Monday: Tire Rotation

Monday: Oil Change

File deleted successfully.

Expected Output if the file is missing:

The file 'workshop_log.txt' is not found

1

NumPy
(Numerical Python)

Prepared by
Dr Mohammad Abdel-Majeed.

(Converted to .odp and Modified by Dr Talal A. Edwan)

Note: This version of the slides is not intended for printing due to the use of coloured content on a dark grey background.

2

Outline

• Create ndarrays.
• Indexing and slicing.

✔ Integer.
✔ Boolean.

• Mathematical operations.
• Useful functions.
• Save and load numpy arrays.
• Linalg and Scipy.

3

Introduction

• NumPy

✔ Numeric Python.
✔ Fast computation with n-dimensional arrays.
✔ Used for data science.

4

NumPy
• In Python we have lists that serve the purpose of arrays, but they are

slow to process.
• NumPy aims to provide an array object that is up to 50x faster than

traditional Python lists.
• The array object in NumPy is called ndarray, it provides a lot of

supporting functions that make working with ndarray very easy.
• Arrays are very frequently used in data science, where speed and

resources are very important.
• NumPy arrays are stored at one continuous place in memory unlike lists,

so processes can access and manipulate them very efficiently. This
behavior is called locality of reference in computer science.

• Import with: import numpy as np
• Use it as: np.command(xxx)

5

ndarrays

• Zero dimensional arrays
 a=np.array(42)
• One dimensional araay

a=np.array([5,67,43,76,2,21])

• Two dimensional array
 a=np.array([[4,5,8,4],[6,3,2,1],[8,6,4,3]])

• Three dimensional array a=np.array([[[1, 2, 3],
[4, 5, 6]],[[1, 2, 3], [4, 5, 6]]])

• Higher dimensional arrays
 a = np.array([1, 2, 3, 4], ndmin=5)

6

import numpy as np
a = np.array(42)
b = np.array([1, 2, 3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(a.ndim)
print(b.ndim)
print(c.ndim)
print(d.ndim)

• Use a tuple to create a NumPy array
 a = np.array((1, 2, 3, 4, 5))
• Numpy Arrays provides the ndim attribute that

returns an integer that tells us how many
dimensions the array have.

0
1
2
3

7

Random Numbers in NumPy
• np. random.randint(low, high=None, size=None, dtype=int
Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the
specified dtype in the “half-open” interval [low, high). If high is None (the
default), then results are from [0, low).
• np.random.randn(d0, d1, ..., dn)
Return a sample (or samples) from the “standard normal” distribution. dn
the dimensions “standard normal” where σ=1 and μ=0.
For random samples with different σ and μ:
sigma * np.random.randn(...) + mu

8

Random Numbers in NumPy --
Example

9

Create ndarray -- Example

import numpy as np

a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"
print(a[0], a[1], a[2]) # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"

The shape of an
array refers to
the number of
elements along
each dimension
(or axis) of the
array. It is
represented as
a tuple of
integers.

10

Create ndarray -- Example
import numpy as np

a = np.zeros((2,2)) # Create an array of all zeros
print(a) # Prints "[[0. 0.]
 # [0. 0.]]"
b = np.ones((1,2)) # Create an array of all ones
print(b) # Prints "[[1. 1.]]"

c = np.full((2,2), 7) # Create a constant array
print(c) # Prints "[[7. 7.]
 # [7. 7.]]"
d = np.eye(2) # Create a 2x2 identity matrix
print(d) # Prints "[[1. 0.]
 # [0. 1.]]"
e = np.random.random((2,2)) # Create an array filled with random values
print(e) # Might print "[[0.91940167 0.08143941]
 # [0.68744134 0.87236687]]"

11

Create ndarray -- Example

import numpy as np
data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
print (arr1) #[6. 7.5 8. 0. 1.]

data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
print(arr2) #[[1 2 3 4]
 #[5 6 7 8]]
print(arr2.ndim) #2
print (arr2.shape) #(2,4)
print (arr2.shape[0]) #2
print (arr2.shape[1]) #4

12

Create ndarray -- Example

[[[6 6 6]
 [6 6 6]]

 [[6 6 6]
 [6 6 6]]

 [[6 6 6]
 [6 6 6]]

 [[6 6 6]
 [6 6 6]]

 [[6 6 6]
 [6 6 6]]]

import numpy as np

arr1 = np.full((5,2,3),6)
print (arr1)

13

NumPy Data Types 1

Data Types 1 refer to
Python's basic types: int,
float, bool, str, and
NoneType (e.g., x = 10,
name = "Ali"). These
hold single values. In
contrast, Data Types 2
are collections like list,
tuple, dict, and set that
store multiple values
(e.g., names = ["Ali",
"Sara"]).

14

Create ndarray -- Example

import numpy as np
data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1,dtype = np.bool)
print (arr1) #[True True True False True]

data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2,np.float32)
print(arr2) #[[1. 2. 3. 4.]
 #[5. 6. 7. 8.]]
print(arr2.ndim) #2
print (arr2.shape) #(2,4)
print (arr2.shapep[0]) #2
print (arr2.shape[1]) #4
print(arr2.dtype) #float32

Deprecated
starting from,
NumPy version
1.2.

You should use:
bool datatype.

15

Change Array’s Data Type

import numpy as np

arr = np.array([3.7, -1.2, -2.6])
print(arr) #[3.7 -1.2 -2.6]
print (arr.astype(np.int32)) #[3 -1 -2]

16

Indexing and Slicing

import numpy as np
arr = np.arange(10)
print (arr) #[0 1 2 3 4 5 6 7 8 9]
print (arr[5])#5
print (arr[5:8]) #[5 6 7]
arr[5:8] = 12
print (arr) #[0 1 2 3 4 12 12 12 8 9]

• Indexing can be done using the indices of the
elements that you want to access, or by
using slicing.

• Similar to Python lists, numpy arrays can be
sliced.

17

Indexing and Slicing (cont.)
• Since arrays may be multidimensional, you must

specify a slice for each dimension of the array:
• A slice of an array is a view into the same data, so

modifying it will modify the original array.

import numpy as np
arr = np.arange(10)
arr_slice = arr[5:8]
arr_slice[1] = 12345
print (arr_slice) #[5 12345 7]
print (arr) #[0 1 2 3 4 5 12345 7 8 9]
arr_slice[:] = 64 #[0 1 2 3 4 64 64 64 8 9]
print (arr)

18

2D array
• The data of each row should be between two square

brackets.
• Slicing array:

arr[R]: row R, and all columns, R could be range.

arr[R, C]: row R, and column C, can be written arr[R][C]
 R and C could be range of numbers.

arr2d = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print (arr2d[0, 2]) #3
print (arr2d[0][2]) #3

import numpy as np
arr2d = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr2d[2]) #[7 8 9]
print (arr2d[:2]) #[[1 2 3]
 # [4 5 6]]

19

Indexing with slices in 2D Array --
Examples

import numpy as np
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print (arr2d) #[[1 2 3]
 # [4 5 6]
 # [7 8 9]]
print (arr2d[[1,2],[0,1]]) # [4 8] items:(1,0),(2,1)

arr[Rlist, Clist] : match each item in the Rlist with the
 items in the Clist.

Row 1 Column 0 Row 2 Column 1

20

Indexing with slices in 2D Array --
Examples

import numpy as np
arr2d = np.array(
[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
print (arr2d[1, :2])
print (arr2d[2, :1])
print (arr2d[:, :1])

What is
the

output?

21

Indexing with slices in 2D Array --
Examples

import numpy as np
arr2d = np.array(
[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
print (arr2d[1, :2])
print (arr2d[2, :1])
print (arr2d[:, :1])

[4 5]

[7]

[[1]
 [4]
 [7]]

22

Indexing Elements in a numpy Array

23

Two-
dimensional

array
slicing

24

3D 2x2x2

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

3, 1
4, 3

2, 4
3, 3

2D

3D

25

Indexing

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

a[0]

3, 1
4, 3

2, 4
3, 3

26

Indexing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

3, 1
4, 3

2, 4
3, 3

a[1]

27

Indexing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 3

3, 1
4, 3

a[0][0]

28

Indexing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 3

3, 1
4, 3

a[0][0][0]

29

Indexing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 33, 1

4, 3
a[0][1]

30

Indexing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 33, 1

4, 3
a[1][0]

31

Slicing

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 3

3, 1
4, 3

a[0,0,0]

32

Slicing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 3

3, 1
4, 3

a[0,1,0]

First 2D matrix Row 1 Column 0

33

Slicing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2, 4
3, 3

3, 1
4, 3

a[:,0]

Slice first
rows from all
2D matrices.

34

Slicing (cont.)

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

])

2,4
3,3

3,1
4,3

a[:,:,0]
Both slices, both
rows, column 0

35

Slicing

You cannot
do this!

From all 2D
matrices,
row 0.

From all 2D
matrices,
column 0.

From all 2D
matrices,
row 0.

Define a 3D
array using
numpy.

Example:

36

Integer Array Indexing

• Integer array indexing allows you to construct
arbitrary arrays using the data from another
array. Here is an example:

import numpy as np
a = np.array([[1,2,3], [4,5, 5], [7,8, 9],[10,11,12]])
print(a)
print (a[[1, 3, 0]])
print (a[[-3, -1, -2]])

37

Integer Array Indexing
• Integer array indexing allows you to construct

arbitrary arrays using the data from another
array. Here is an example:

import numpy as np
a = np.array([[1,2,3], [4,5, 5], [7,8, 9],
[10,11,12]])
print(a)
print (a[[1, 3, 0]])
print (a[[-3, -1, -2]])

#[[1 2 3]
[4 5 5]
[7 8 9]
[10 11 12]]

#[[4 5 5]
[10 11 12]
[1 2 3]]

#[[4 5 5]
[10 11 12]
[7 8 9]]

38

Integer Array Indexing (cont.)

import numpy as np
a = np.array([[1,2,3], [4,5, 5], [7,8, 9],[10,11,12]])

print(a[[0, 1, 2], [0, 1, 0]])
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

print(a[[0, 0], [1, 1]])
print(np.array([a[0, 1], a[0, 1]]))

39

Integer Array Indexing (cont.)

import numpy as np
a = np.array([[1,2,3], [4,5, 5], [7,8, 9],[10,11,12]])

print(a[[0, 1, 2], [0, 1, 0]])
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

print(a[[0, 0], [1, 1]])
print(np.array([a[0, 1], a[0, 1]]))

#[1 5 7]
#[1 5 7]

#[2 2]
#[2 2]

40

Boolean Array Indexing

import numpy as np
a_index= np.array([True, True,False,False,True])
a = np.array([5,12,50,33,12])
print(a[a_index]) # [5 12 12]]

import numpy as np
import numpy as np
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print (arr2d[[True,True,False],1])#[2 5], rows:0,1; col:1
print (arr2d[[True,True,False],[True,True,False]]) #[1 5]

#(0,0) ,(1,1)

41

Stacking

• Create an array by stacking numpy arrays.

x = np.arange(0,10,2) # x=([0,2,4,6,8])
y = np.arange(5) # y=([0,1,2,3,4])
m = np.vstack([x,y]) # m=([[0,2,4,6,8],

 # [0,1,2,3,4]])
xy = np.hstack([x,y]) # xy =([0,2,4,6,8,0,1,2,3,4])

42

Stacking

• Create an array by stacking numpy arrays.
✔ vstack: Stack along first axis.
✔ hstack: Stack along second axis.
✔ dstack: Stack along the third axis.

x = np.arange(0,10,2) # x=([0,2,4,6,8])
y = np.arange(5) # y=([0,1,2,3,4])
m = np.vstack([x,y]) # m=([[0,2,4,6,8],

 # [0,1,2,3,4]])
xy = np.hstack([x,y]) # xy =([0,2,4,6,8,0,1,2,3,4])

43

Broadcasting -- Mathematical
operations

• Basic mathematical functions operate
elementwise on arrays,
✔ Available both as operator overloads and as

functions in the numpy module
✔ Numpy operations are usually done on pairs of

arrays on an element-by-element basis
✔ Between arrays and scalar value and array

 https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

For more details and examples:

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

44

Element-wise operations and
Mathematical Manipulation of Arrays

import numpy as np
arr = np.arange(9).reshape((3, 3))
print (arr)
print (arr*arr)

[[0 1 2]
 [3 4 5]
 [6 7 8]]

[[0 1 4]
 [9 16 25]
 [36 49 64]]

45

import numpy as np
arr = np.arange(9).reshape((3, 3))
print (arr)
print (np.sqrt(arr))
print (np.exp(arr))

Element-wise operations (cont.)

[[0 1 2]
 [3 4 5]
 [6 7 8]]

[[0. 1. 1.41421356]
 [1.73205081 2. 2.23606798]
 [2.44948974 2.64575131 2.82842712]]

[[1.00000000e+00 2.71828183e+00 7.38905610e+00]
 [2.00855369e+01 5.45981500e+01 1.48413159e+02]
 [4.03428793e+02 1.09663316e+03 2.98095799e+03]]

46

import numpy as np
arr = np.arange(9).reshape((3, 3))
print (arr)
print (arr * 3)
print (arr + 4)

Elementwise Operations -- Scalar

[[0 1 2]
 [3 4 5]
 [6 7 8]]

[[0 3 6]
 [9 12 15]
 [18 21 24]]

[[4 5 6]
 [7 8 9]
 [10 11 12]]

47

Elementwise Operations -- Scalar
(cont.)

import numpy as np
data = np.arange(5,dtype=np.int32)
print (data)#[0 1 2 3 4]
print (data * 10)#[0 10 20 30 40]
print (data + data)#[0 2 4 6 8]
print (1/((data+1)))#[1. 0.5 0.33333333 0.25 0.2]

48

Element wise Operations
Statistics (max, min , sum)

import numpy as np
x = np.random.randn(4)
y = np.random.randn(4)
y = np.round(y,1)
print(x)
print(y)
print(np.maximum(x, y))
print(np.add(x,y)) #Equivalent to x + y
print(np.exp(x))
print(np.round(y))

[0.10762685 -0.10194233 -0.31373994 0.86389688]
[-0.2 -0.9 -0.4 0.3]
[0.10762685 -0.10194233 -0.31373994 0.86389688]
[-0.09237315 -1.00194233 -0.71373994 1.16389688]
0.5558414572185999
[1.11363211 0.90308163 0.73070903 2.37238762]
[-0.2 -0.9 -0.4 0.3]
[-0. -1. -0. 0.]

49

Inner Product

import numpy as np
import numpy as np
arr = np.arange(9).reshape((3, 3))
print (arr)
print (arr.T)
print (np.dot(arr, arr.T))
print(np.matmul(arr,arr.T))

[[0 1 2]
 [3 4 5]
 [6 7 8]]

[[0 3 6]
 [1 4 7]
 [2 5 8]]

[[5 14 23]
 [14 50 86]
 [23 86 149]]

[[5 14 23]
 [14 50 86]
 [23 86 149]]

50

Axis operations

• Instead of applying the mathematical
operations on the entire array they can be
done per-row or per-column

✔ You should specify the axis.
✔ axis=0 → applied on each column.
✔ axis=1 → applied on each row.

51

Axis operations

import numpy as np
arr = np.array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

print (arr) #[[0 1 2]
 # [3 4 5]
 #[6 7 8]]
print (arr.mean(axis=0)) #[3. 4. 5.]
print (arr.mean(axis=1)) #[1. 4. 7.]

52

Example:

53

Axis Operations -- sum
import numpy as np
arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
print (arr) #[[0 1 2]
 #[3 4 5]
 #[6 7 8]]

print (arr.sum(0)) #[9 12 15]

print (arr.sum(1))#[3 12 21]

print (arr.cumsum(0))#[[0 1 2]
 #[3 5 7]
 #[9 12 15]]

print (arr.cumprod(axis=1))#[[0 0 0]
 #[3 12 60]
 #[6 42 336]]

54

Relational Operators and numpy

import numpy as np
x = np.arange(1, 9)
y = x>5
print(y)

[False False False False False True True True]

55

Where()

• Where(Condition, if True, if False)
✔ Returns numpy.ndarray array
✔ Use the name of the array to keep the values the

same
import numpy as np
arr = (np.random.random(16)).reshape(4, 4)
print(arr)
print (np.where(arr > 0.5, 2, -2))

[[0.11305372 0.41972489 0.71758276 0.7024291]
 [0.28989595 0.71371535 0.58332619 0.69298548]
 [0.48567377 0.00463536 0.57581238 0.27679739]
 [0.36887073 0.35191625 0.77679602 0.40723983]]

[[-2 -2 2 2]
 [-2 2 2 2]
 [-2 -2 2 -2]
 [-2 -2 2 -2]]

56

Where() (cont.)

• Returns elements chosen from x or y depending
on the condition.

import numpy as np
x = [1,2,3]
y = [10, 20, 30]
condition = [True, False, True]
np.where(condition,x,y) #Output is [1 20 3]

57

Relational Operators and numpy --
with where

import numpy as np
x = np.arange(11, 19)
y = x>15
print(y)
print(np.where(y)) # returns tuple with indices and data type
print(np.where(y)[0]) # returns indices
print(x[np.where(y)[0]]) # returns values
#use np.nonzero(y)

[False False False False False True True True]
(array([5, 6, 7], dtype=int64),)
[5 6 7]
[16 17 18]

58

Boolean Arrays

import numpy as np
arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
print ((arr > 4).sum()) #4

arr = np.array([False, False, True, False])
print (arr.any()) #True
print (arr.all()) #False

59

Sorting
import numpy as np
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
arr.sort()
print (arr)#[[0 2 5]
 #[1 4 6]
 #[3 6 7]]
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
arr.sort(0) # column sort
print (arr))#[[0 4 1]
 # [6 5 2]
 # [6 7 3]]
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
arr.sort(1) # row sort
print (arr) #[[0 2 5]
 # [1 4 6]
 # [3 6 7]]

60

Unique

import numpy as np
names = np.array(['Will', 'Bob', 'Joe', 'Bob', 'Will', 'Joe'])
print (np.unique(names)) #['Bob' 'Joe' 'Will']
print (sorted(set(names)))#['Bob' 'Joe' 'Will']

61

numpy.in1d
• Test whether each element of a 1-D array is also present in a

second array.
✔ Returns a boolean array the same length as ar1 that is True where an

element of ar1 is in ar2 and False otherwise.
print(np.in1d(ar1,ar2))

import numpy as np
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
print(np.in1d([1,5],arr)) #[True True]
print(arr[np.in1d([1,5],arr)]) #[True True]

arr1=np.array([11,21,13,14])
arr2=np.array([11,5,1,21,14])
print(np.where(np.in1d(arr1,arr2)))
print(arr1[np.where(np.in1d(arr1,arr2))[0]])

(array([0, 1, 3], dtype=int64),)
[11 21 14]

62

Get Index
(argsort(),argwhere(),argmax())

• Used when interested in the index of the
elements rather than value.

• np.argmax() → Returns the indices of the
maximum values along an axis.

• np.argsort() → Returns the indices that would
sort an array.

• np.argwhere() → Find the indices of array
elements that are non-zero, grouped by element.

63

Get Index
(argsort(),argwhere(),argmax()) cont.

import numpy as np
x = np.array([3,6,12,5,3,77,67,43,23,50,77,11,24])
print(x)
print(np.argmax(x))
print(np.argsort(x))
print(np.argwhere(x>50))

[3 6 12 5 3 77 67 43 23 50 77 11 24]
5
[0 4 3 1 11 2 8 12 7 9 6 5 10]
[[5]
 [6]
 [10]]

64

Save numpy Array

• np.save(): Saves an array to a binary file in
numpy .npy format
✔ Parameters: file name and numpy array.

• np.load(): loads an array from .npy file
import numpy as np
arr = np.arange(10)
print (arr)#[0 1 2 3 4 5 6 7 8 9]
np.save('some_array', arr)
arr1 = np.load('some_array.npy')
print (arr1)#[0 1 2 3 4 5 6 7 8 9]

65

Saving Multiple numpy Arrays

import numpy as np
arr3 = np.arange(3)
arr5 = np.arange(5)
np.savez('array_archive.npz', a=arr3, b=arr5)
arch = np.load('array_archive.npz')
print (type(arch))#<class 'numpy.lib.npyio.NpzFile'>
print (arch['a'])#[0 1 2]
print (arch['b'])#[0 1 2 3 4]
print (dict(arch))
#{'a': array([0, 1, 2]), 'b': array([0, 1, 2, 3, 4])}

66

Loading Text Data into numpy
Array

import numpy as np
arr1 = np.loadtxt('array_ex.txt', delimiter=',')
print (arr1)#[[1. 2. 3. 4.]
 #[12. 13. 14. 15.]]
print (type(arr1)) #<class 'numpy.ndarray'>

67

Loading Text Data into numpy
Array (cont.)

• Using genfromtxt: gives you some options like
the parameters missing_values, filling_values
that can help you dealing with an incomplete
data.

fill_values = (111, 222, 333, 444, 555) # one for each column
np.genfromtxt(filename,delimiter=',',filling_values=fill_values)

1,2,,,5
6,,8,,
11,,,,

array([[1., 2., 333., 444., 5.],
 [6., 222., 8., 444., 555.],
 [11., 222., 333., 444., 555.]])

68

Scipy

• SciPy is a library that uses NumPy for more
mathematical functions.

• SciPy uses NumPy arrays as the basic data
structure.

• used tasks in scientific programming, including
linear algebra, integration (calculus), ordinary
differential equation solving, and signal processing.

• For a quick start on the functions check this
https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

69

Scipy

• SciPy is a library that uses NumPy for more
mathematical functions.

• SciPy uses NumPy arrays as the basic data
structure.

• used tasks in scientific programming, including
linear algebra, integration (calculus), ordinary
differential equation solving, and signal processing.

• For a quick start on the functions check this
https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

70

Also: linalg but,
different from the
NumPy’s one.

71

Linear Algebra
Numpy.linalg

• Available in scipy and numpy.
• Scipy version is more comprehensive and faster.

✔ Matrix and vector products.
✔ Decompositions.
✔ Matrix eigenvalues.
✔ Norms and other numbers.
✔ Solving equations and inverting matrices.
✔ Exceptions.
✔ Linear algebra on several matrices at once.
For more details:

https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf

https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf
https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf

72

References

• Numpy Documentation, http://Scipy.org
• Python for Data Analysis by Katia Oleinik.

http://scipy.org/

Computer Applications Lab
0907331

Lab Sheet 6: Numpy(Numerical Python)

A regional retail company wants to analyze its weekly product sales using Python and NumPy.
They have collected data for 5 products (A–E) sold during one week.
Each product’s sales data (for Monday–Sunday) is stored in a file called sales.txt.

However, some values in the file might be missing or inconsistent, so you must carefully read,
clean, and analyze the data using NumPy operations.
Later, you will add a new randomly generated product (F), and perform advanced data analytics
like slicing, conditional selection, sorting, and saving/loading arrays.

File Content (sales.txt):

Product Mon Tue Wed Thu Fri Sat Sun
A 25 30 28 35 40 38 45
B 10 12 15 11 13 14 16
C 50 45 55 60 65 58 62
D 5 7 6 8 10 9 12
E 20 18 22 25 30 28 27

Step 1: Reading and Cleaning the Data

Read the file sales.txt using NumPy’s genfromtxt() function.
Handle any missing or invalid values by replacing them with zeros or a suitable default.

Then, separate the following:

 A list of days
 A list of product names
 A 2D NumPy array for sales values only

Expected Output:

Days: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
Products: ['A', 'B', 'C', 'D', 'E']
Sales Matrix:
[[25, 30, 28, 35, 40, 38, 45],
 [10, 12, 15, 11, 13, 14, 16],
 [50, 45, 55, 60, 65, 58, 62],
 [5, 7, 6, 8, 10, 9, 12],
 [20, 18, 22, 25, 30, 28, 27]]

Prepared by: Eng. Alaa Arabiyat Page 1 of 6

Step 2: Calculate Total Weekly Sales per Product

Compute the total sales for each product by summing across all days (axis=1).

Expected Output:

Total sales per product:
A: 241
B: 91
C: 395
D: 57
E: 170

Step 3: Find the Day with the Highest Total Sales

Sum across products (axis=0) to find the total per day.
Identify the day with the highest total sales.

Expected Output:

Day with highest total sales: Fri (158)

Step 4: Identify the Product with the Highest Average Sales

Find the mean (average) sales per product and determine which product performed best on
average.

Expected Output:

Product with highest average sales: C (56.43)

Step 5: Print a Formatted Sales Report

Display a neatly aligned sales report where products are rows and days are columns.

Expected Output:

 Mon Tue Wed Thu Fri Sat Sun
A 25 30 28 35 40 38 45
B 10 12 15 11 13 14 16
C 50 45 55 60 65 58 62
D 5 7 6 8 10 9 12
E 20 18 22 25 30 28 27

Step 6: Analyze Minimum Sales per Product

Prepared by: Eng. Alaa Arabiyat Page 2 of 6

Find, for each product, the day with the lowest sales using NumPy functions like argmin().

Expected Output:

Lowest sales per product:
A: Mon (25)
B: Mon (10)
C: Tue (45)
D: Mon (5)
E: Tue (18)

Step 7: Weekdays vs Weekends Sales Comparison

Compute total sales for:

 Weekdays (Mon–Fri)
 Weekends (Sat–Sun)

Compare which period generates higher revenue.

Expected Output:

Weekday total sales: 968
Weekend total sales: 187

Step 8: Add a New Product with Random Sales

Use np.random.randint() to generate random sales (between 10–60) for a new product F.
Append this data to the sales matrix.

Expected Output Example:

Random sales for product F: [34 12 50 25 41 39 55]
Updated Products: ['A', 'B', 'C', 'D', 'E', 'F']

Step 9: Indexing and Slicing Operations

Perform the following tasks using indexing and slicing:

(a) Extracting Data Slices

 Display sales for the first 3 products.
 Show only Mon–Wed columns.

Expected Output:

Prepared by: Eng. Alaa Arabiyat Page 3 of 6

Sales (Products A–C, Mon–Wed):
[[25 30 28],
 [10 12 15],
 [50 45 55]]

(b) Axis Operations

 Find the max sale per product (axis=1).
 Find the max sale per day (axis=0).

Expected Output:

Max sale per product: [45 16 65 12 30 55]
Max sale per day: [50 45 55 60 65 58 62]

(c) Conditional Selection (np.where)

Use np.where() to identify sales below 15 and replace them with 15 (minimum acceptable
sales).

Expected Output:

Updated Sales Matrix (values <15 replaced with 15):
[[25 30 28 35 40 38 45]
 [15 15 15 15 15 15 16]
 [50 45 55 60 65 58 62]
 [15 15 15 15 15 15 15]
 [20 18 22 25 30 28 27]
 [34 12 50 25 41 39 55]]

(d) Fancy Indexing & Boolean Masking

 Select specific rows and columns using fancy indexing.
 Extract all sales > 35 using Boolean masking.

Expected Output:

Selected Products (B, D, A):
[[15 15 15 15 15 15 16],
 [15 15 15 15 15 15 15],
 [25 30 28 35 40 38 45]]

Sales greater than 35: [40 38 45 50 45 55 60 65 58 62 41 39 55]

Step 10: Sorting and Ranking

Prepared by: Eng. Alaa Arabiyat Page 4 of 6

Sort products by their total weekly sales using:

 np.sort() for sorting values
 np.argsort() for obtaining sorted indices

Expected Output:

Sorted totals: [57 91 170 241 395 256]
Products sorted by total sales: ['D', 'B', 'E', 'A', 'C', 'F']

Step 11: Locating Data Points

Use:

 np.argmax() to find the product with highest total sales
 np.argwhere() to locate all values equal to 60

Expected Output:

Product with highest total sales: C (index 2)
Sales equal to 60 found at positions: [[2 3]]

Step 12: Saving and Loading Arrays

Save multiple arrays (sales_matrix, products, days) into a single file using np.savez().
Then reload them and verify that the data matches.

Expected Output:

Arrays saved successfully to 'sales_data.npz'
Loaded Products: ['A' 'B' 'C' 'D' 'E' 'F']
Loaded Sales Matrix shape: (6, 7)

Step 13: Exporting and Importing Text Data

Save the updated sales matrix to a text file using np.savetxt() and read it again with
np.loadtxt().

Expected Output:

Data saved to 'clean_sales.txt'
Data loaded successfully from file:
[[25. 30. 28. 35. 40. 38. 45.]
 [15. 15. 15. 15. 15. 15. 16.]
 [50. 45. 55. 60. 65. 58. 62.]

Prepared by: Eng. Alaa Arabiyat Page 5 of 6

 [15. 15. 15. 15. 15. 15. 15.]
 [20. 18. 22. 25. 30. 28. 27.]
 [34. 12. 50. 25. 41. 39. 55.]]

Prepared by: Eng. Alaa Arabiyat Page 6 of 6

1

Prepared by
Dr Mohammad Abdel-Majeed and Modified by Dr Samah Rahamneh

(Converted to .odp and Modified by Dr Talal A. Edwan)

Data Science: is a branch of computer science where we study how to
store, use and analyze data for deriving information from it.

It is the use of scientific methods to obtain useful information from
computer data, especially large amounts of data.

Pandas

Note: This version of the slides is not intended for printing due to the use of coloured content on a dark grey background.

2

Outline
• Series and data frames (DataFrame)
• Reading the data
• Exploring the data
• Indexing
• Selection
• Data Analysis
• Grouping
• Applying functions
• Sorting
• Missing values
• Combining

3

Pandas
• Adds data structures and tools designed to work with
table-like data.

• Provides tools for data manipulation: reshaping,
merging, sorting, slicing, aggregation etc.

• Clean messy data sets, and make them readable and
relevant.

• Allows handling missing data.
• The name "Pandas" has a reference to both

 "Panel Data”. A term used in statistics for structured
 datasets. Panel Data = panda + s = pandas.

4

Panel and Panel Data
Collins Online Dictionary

5

The term "panel data" refers to data being collected over time from the
same units (such as individuals, firms, or countries). The word "panel"
refers to a panel of respondents -- a fixed group of entities being
repeatedly surveyed or observed across multiple time periods.

Panel Data

Data collected from a unit over time.

6

Pandas Data Structures

• Series: one dimensional data structure(column)
that stores values — and for every value it holds
a unique index, too.

• DataFrame: two (or more) dimensional data
structure — basically a table with rows and
columns. The columns have names and the
rows have indexes.

import pandas as pd
pd.command(xxx)

7

Series
S = pd.Series([15,20,13,55,67,34,23,1])
print(S)

0 15
1 20
2 13
3 55
4 67
5 34
6 23
7 1

print(S[0]) 15

S =
pd.Series([15,20,13,55,67,34,23,1],index=['i0','
i1','i2','i3','i4','i5','i6','i7'])
print(S)

i0 15
i1 20
i2 13
i3 55
i4 67
i5 34
i6 23
i7 1

print(S['i0'])
print(S['i5'])

15
34

With the index argument, you can name your own labels.

8

Series (cont.)

9

DataFrame

df = pd.DataFrame({'Name':['Mohammad', 'Ahmad','Haneen','Leen'],
'Age':[12,25,40,17]})
print (df)#shows the first 5 rows and the last 5 rows
print (df.to_string())#shows all the rows of the dataframe

 Name Age
0 Mohammad 12
1 Ahmad 25
2 Haneen 40
3 Leen 17

10

DataFrame (cont.)

11

DataFrame with Index

df = pd.DataFrame({'Name':['Mohammad', 'Ahmad','Haneen','Leen'],
 'Age':[12,25,40,17]},
 index = ['s1','s2','s3','s4'])
print(df)

 Name Age
s1 Mohammad 12
s2 Ahmad 25
s3 Haneen 40
s4 Leen 17

12

Reading Data Files

How to
read csv

files?

comma-separated values (CSV) file is a text file
that has a specific format which allows data to be
saved in a table structured format.

13

Reading Data Files (cont.)

pd.read_csv
(‘full path to

csv file’)

comma-separated values (CSV) file is a text file
that has a specific format which allows data to be
saved in a table structured format.

14

Reading Data Files (cont.)

• Several files types can be accessed and their
content will be stored in Series or DataFrame

import numpy as np
import pandas as pd
filename =r'C:\Users\user\Desktop\movies.xls'
movies = pd.read_excel(filename)#reads the first sheet, xlrd
print(movies.shape)#(1604,19)
Note: you may need to install xlrd package to run the code

15

Reading Data Files (cont.)

• Several files types can be accessed and their
content will be stored in Series or DataFrame

… or ..
ellipsis
means
too many
rows/col.

16

Other read_*
✔ https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

 csv

xls

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

17

Exploring the Data

• Data types.

df.price

18

Exploring the Data (cont.)

• Data types.

print(movies.dtypes)
print(movies.Country.dtype)
movies.Duration.astype('int32')#
make sure that you do not have
NA values

Title object
Year float64
Genres object
Language object
Country object
Duration float64
Budget float64
Gross Earnings float64
Director object
Actor 1 object
Actor 2 object
Facebook Likes - Actor 1 float64
Facebook Likes - Actor 2 float64
Facebook likes - Movie int64
Facenumber in posters float64
User Votes int64
Reviews by Users float64
Reviews by Crtiics float64
IMDB Score float64

19

Exploring the Data
filename =r'C:\Users\mohammad\Desktop\movies.xls'
movies = pd.read_excel(filename)#reads the first sheet, xlrd
print(movies.shape)
print(movies.head(4))
Print(movies.tail())# last five records

(1604, 19)
 Title Year ... Reviews by Crtiics IMDB Score
0 127 Hours 2010.0 ... 450.0 7.6
1 3 Backyards 2010.0 ... 20.0 5.2
2 3 2010.0 ... 76.0 6.8
3 8: The Mormon Proposition 2010.0 ... 28.0 7.1

20

Exploring the Data (cont.)

df.columns

21

Exploring the Data (cont.)

import numpy as np
import pandas as pd
filename =r'C:\Users\mohammad\Desktop\movies.xls'
movies = pd.read_excel(filename)#reads the first sheet, xlrd
print(movies.columns)# columns’ labels

Index(['Title', 'Year', 'Genres', 'Language', 'Country', 'Duration', 'Budget',
 'Gross Earnings', 'Director', 'Actor 1', 'Actor 2',
 'Facebook Likes - Actor 1', 'Facebook Likes - Actor 2',
 'Facebook likes - Movie', 'Facenumber in posters', 'User Votes',
 'Reviews by Users', 'Reviews by Crtiics', 'IMDB Score'],
 dtype='object')

22

Exploring the Data/
Data Frames attributes

df.attribute description
dtypes list the types of the columns
columns list the column names

axes list the row labels and column names

ndim number of dimensions

size number of elements

shape return a tuple representing the dimensionality

values numpy representation of the data

23

Add Columns Titles

• By default the first row is considered the
columns headers.

• In case there is no columns headers then you
read the data as follows:

• Create a list of the columns headers and
assign it to the columns variable of the data
frame.

movies.columns= list(range(19))
movies.columns = [‘col1’,’col2’…]

movies = pd.read_excel(filename,header=None)

Can we remove the
first statement?

24

Add Columns Titles

• By default the headers will be the integer
values starting from 0.

• To add column headers you have to create a
list of the columns headers names and assign
it to the columns variable of the data frame.

movies.columns = [‘col1’,’col2’…]

25

Data Access/Column Access

• To access the data you can use the column
header as follows:

print(movies['Title'])
Print(movies.Title)

0 127 Hours
1 3 Backyards
2 3
3 8: The Mormon Proposition
4 A Turtle's Tale: Sammy's Adventures
 ...
1602 Wuthering Heights
1603 Yu-Gi-Oh! Duel Monsters
Name: Title, Length: 1604, dtype: object

26

Data Access/Column Access

• To access the data you can use the column
header as follows:

print(movies[['Year','IMDB Score',]])

NaN = Not a Number.
Special floating-point
value to represent
missing data (e.g.,
blank cell).

 Year IMDB Score
0 2010.0 7.6
1 2010.0 5.2
2 2010.0 6.8
3 2010.0 7.1
4 2010.0 6.1

1600 NaN 7.3
1601 NaN 7.1
1602 NaN 7.7
1603 NaN 7.0

27

Data Access/Column Access
(cont.)

28

Data Access/Column Access
(cont.)

df [[…
two

brackets,
list of lists.

29

Renaming Columns

• To access columns you have to avoid spaces in
column name

df2 = pd.DataFrame([[1, 1, 1, 1],
 [2, 2, 2, 2]],
 columns=['A 1','B 1','C 1','D 1'])
print(df2)
df2.columns = [c.replace(' ', '_') for c in df2.columns]
print(df2)

 A 1 B 1 C 1 D 1
0 1 1 1 1
1 2 2 2 2
 A_1 B_1 C_1 D_1
0 1 1 1 1
1 2 2 2 2

30

Indexing

• Works just like they do in the rest of the
Python ecosystem.

• Pandas has its own access operators,
✔ iloc: index based selection.
✔ loc : label based selection.

31

Index Based Selection
(iloc)

print(movies.iloc[5])#returns row 5
print(movies.iloc[:5])#returns row 0,1,2,3,4
print(movies.iloc[:5,0])#returns titles (column 0) of the
first 5 moviess
print(movies.iloc[[0,1,2,3,4],0])#returns titles
(column0) of the first 5 movies
print(movies.iloc[[0,1,2,3,4],18])#returns IMDB scores
(column 18) of the first 5 movies

32

Label Based Selection
(loc)

• When using loc the indexing is inclusive.
✔ The start and end are included.

movies = pd.read_excel(filename)#reads the first
sheet, xlrd
print(movies.loc[5])#returns row 5
print(movies.loc[:5])#returns row 0,1,2,3,4,5
print(movies.loc[:5,'Title'])#returns titles of the
first 6 movies
print(movies.loc[[0,1,2,3,4],'IMDB Score'])#returns
IMDB Scores of the first 5 movies
print(movies.loc[-5:,'IMDB Score'])#returns IMDB
Scores of the last 5 movies
print(movies.loc[-5:,['IMDB Score','Title']])#returns
IMDB Scores and titles of the last 5 movies

33

set_index()

• An Index column will be added to the
dataframe by default
– The range is from 0#of rows -1

• set_index() can be used to set any of the
columns values to be used as a row index
– Duplicates are allowed

34

set_index()

df = pd.DataFrame({'Name':['Mohammad',
'Mohammad','Haneen','Leen'],
'Age':[12,25,40,17],
'Hobby':['Soccer','Singing','Reading','Reading']})
X = df.set_index('Age')
print(X)
df.set_index('Name',inplace=True)
print(df)
print(df.loc['Mohammad'])

 Hobby Name
Age
12 Soccer Mohammad
25 Singing Mohammad
40 Reading Haneen
17 Reading Leen

 Age Hobby
Name
Mohammad 12 Soccer
Mohammad 25 Singing
Haneen 40 Reading
Leen 17 Reading

 Age Hobby
Name
Mohammad 12 Soccer
Mohammad 25 Singing

35

Selection

• Several Techniques can be used to select
certain elements,
✔Relational Operators >,<,>=….
✔ isin().
✔notnull(), isnull().

36

Selection/Examples

print(movies.loc[movies.Country== 'Spain'])#all rows with country=Spain
print(movies[movies.Country== 'Spain'])
print(movies[(movies['Country']== 'Spain') & (movies['Reviews by
Users']>400)])
print(movies[(movies['Year']== 2012) | (movies['Year']==2011)])
print(movies[movies.Year.isin([[2011,2012]])
print(movies.loc[movies.Year.isin([[2011,2012]])

print(movies.loc[movies.Budget.notnull()])
print(movies.loc[movies.Budget.isnull()])

37

Assigning Data

• Assignment operator is used.
✔Broadcasting is supported.

movies.loc[3,'Budget'] = 1500# make budget at row 3 =1500
movies['Title']= 'New Title' #make all data on Title column
=‘New Title”
movies.loc[:5,'Title'] = 'New'# make the first 6 rows of the
Title column =‘New’
movies.head(5).Year= 2000# .head() is used to show data only
print(movies.head(10))

38

Data Analysis
describe()

• Generates a high-level summary of the
attributes of the given column.
✔ It is type-aware, meaning that its output changes
based on the data type of the input.

✔ For numeric data, the result’s index will include
count, mean, std, min, max and 25, 50 and 75
percentiles.

✔ For object data (e.g., strings or timestamps), the
result’s index will include count, unique, top, and
freq.

39

Data Analysis
describe()

• For mixed data types provided via a
DataFrame, the default is to return only an
analysis of numeric columns.

print(movies.describe())

 Year Duration ... Reviews by Crtiics IMDB Score
count 1497.000000 1594.000000 ... 1571.000000 1604.000000
mean 2012.773547 103.328733 ... 187.586887 6.337718
std 1.868725 27.429001 ... 165.281572 1.169382
min 2010.000000 7.000000 ... 1.000000 1.600000
25% 2011.000000 92.000000 ... 38.000000 5.700000
50% 2013.000000 102.000000 ... 159.000000 6.400000
75% 2014.000000 114.750000 ... 288.000000 7.100000
max 2016.000000 511.000000 ... 813.000000 9.500000

40

Data Analysis
describe()

• Numerical Fields
print(movies.Duration.describe())
print(type(movies.Duration.describe()))
print(movies.Duration.describe()['max'])
print(movies.Duration.describe().loc['max'])

count 1594.000000
mean 103.328733
std 27.429001
min 7.000000
25% 92.000000
50% 102.000000
75% 114.750000
max 511.000000
Name: Duration, dtype: float64
<class 'pandas.core.series.Series'>
511.0
511.0

41

Data Analysis/Summary
describe()

• String Fields
print(movies.Title.describe())
print(movies.Title.describe().top)
print(movies.Title.describe()['top'])
print(movies.Title.describe().loc['top'])

count 1604
unique 1551
top Victor Frankenstein
freq 3
Name: Title, dtype: object
Victor Frankenstein
Victor Frankenstein
Victor Frankenstein

42

Data Analysis/Basic Statistics
print(movies.describe())
print(movies.describe().loc['max','Budget'])
print(movies.Budget.max())
print(movies.Budget.mean())
print(movies.Budget.mode())#most frequently data
print(movies.Duration.mean().round())
movies.Duration += 15#Broadcasting
print(movies.Duration.mean().round())

600000000.0
600000000.0
40563243.28888889
0 20000000.0
dtype: float64
103.0
118.0

 Year Duration ... Reviews by Crtiics IMDB Score
count 1497.000000 1594.000000 ... 1571.000000 1604.000000
mean 2012.773547 103.328733 ... 187.586887 6.337718
std 1.868725 27.429001 ... 165.281572 1.169382
min 2010.000000 7.000000 ... 1.000000 1.600000
25% 2011.000000 92.000000 ... 38.000000 5.700000
50% 2013.000000 102.000000 ... 159.000000 6.400000
75% 2014.000000 114.750000 ... 288.000000 7.100000
max 2016.000000 511.000000 ... 813.000000 9.500000

43

Data Analysis/Summary
Aggregation

• agg() method are useful when multiple
statistics are computed per column:

print(movies[['Budget','IMDB Score']].agg([len,min,max]))
print(movies[['Budget','IMDB Score']].agg([len,min,max]).loc['max','Budget'])

 Budget IMDB Score
len 1604.0 1604.0
min 1400.0 1.6
max 600000000.0 9.5
600000000.0

44

Data Analysis/Summary
describe()

print(movies.Year.unique())

print(movies.Year.value_counts())

print(movies.Year.value_counts()[2012])

[2010. 2011. 2012. 2013.
2014. 2015. 2016. nan]
2014.0 252
2013.0 237
2010.0 230
2015.0 226
2011.0 225
2012.0 221
2016.0 106
Name: Year, dtype: int64
221

45

Grouping

• groupby() method is used to group the rows in the
dataframe based on certain column(s) values.

✔ movies.groupby(['Country']) → groups the rows
based on the Country

➢ Number of groups will be equal to the number
of countries.

✔ We can perform operations on each group.

46

Grouping
grouped = movies.groupby('Country')
print(grouped.groups)#shows indices
print(grouped.get_group('Spain'))

{'Australia': [16, 54, 65, 194, 294, 360, 473, 692, 859, 860, 880, 1014, 1120, 1138,
1269, 1319, 1514, 1601], 'Bahamas': [978], 'Belgium': [399, 895, 1348, 1349],
'Brazil': [804, 992, 1359], 'Bulgaria': [942], 'Cambodia': [1033],
'Canada': [13, 17, 26, 68, 78, 140, 143, 216, 255, 290, 300, 350, 450, 467, 492, 504, 526,…

 Title Year ... Reviews by Crtiics IMDB Score
23 Buried 2010.0 ... 363.0 7.0
258 Blackthorn 2011.0 ... 92.0 6.6
334 Midnight in Paris 2011.0 ... 487.0 7.7
375 Sleep Tight 2011.0 ... 191.0 7.2
430 There Be Dragons 2011.0 ... 77.0 5.9
571 Red Lights 2012.0 ... 195.0 6.2
631 The Impossible 2012.0 ... 371.0 7.6
902 Underdogs 2013.0 ... 82.0 6.7
927 Aloft 2014.0 ... 56.0 5.3
1006 Hidden Away 2014.0 ... 9.0 7.2
1225 Eden 2015.0 ... 5.0 4.8
1295 Regression 2015.0 ... 140.0 5.7

[12 rows x 19 columns]

47

Grouping

• Example: Find the budget spent by each country on movies
production

print(movies.groupby(['Country']).Budget.sum().head(5))

Country
Australia 751500000.0
Bahamas 5000000.0
Belgium 49000000.0
Brazil 11000000.0
Bulgaria 7000000.0
Name: Budget, dtype: float64

48

Grouping
• Example: Find the number of movies produced by each country

print(movies.groupby(['Country']).Title.count().sort_values())
print(movies.groupby(['Country']).Title.count(). sort_values().max())
var=movies.groupby(['Country']).Title.count().sort_values()
print(var.index[var.shape[0]-1])

print(movies['Country'].describe().top)

Country
United Arab Emirates 1
Iran 1
.
.
Canada 44
France 54
UK 136
USA 1184
Name: Title, dtype: int64
1184
USA
USA

49

Grouping and Aggregation

• Use agg() to display more than one function
per group
✔Results generated per group

print(movies.groupby(['Country']).Budget.agg([len,min,max]))

 len min max
Country
Australia 18.0 2500000.0 150000000.0
Bahamas 1.0 5000000.0 5000000.0
Belgium 4.0 15000000.0 34000000.0

50

Grouping
• Notice that the result has new index and in this case multi-
index.

print(movies.groupby(['Country','Language']).Budget.agg([len,min,max]))
var=movies.groupby(['Country','Language']).Budget.agg([len,min,max])
print(var.loc['Brazil','max'])
print(var.loc['Brazil','max'].loc['English'])

 len min max
Country Language
Australia English 18 2500000.0 150000000.0
Bahamas English 1 5000000.0 5000000.0
Belgium English 4 15000000.0 34000000.0
Brazil English 1 3000000.0 3000000.0
 Portuguese 2 4000000.0 4000000.0
...
USA English 1174 1400.0 263700000.0
 Hebrew 1 NaN NaN
 None 1 4000000.0 4000000.0
 Spanish 3 1200000.0 6000000.0
United Arab Emirates Arabic 1 125000.0 125000.0
[83 rows x 3 columns]
Language
English 3000000.0
Portuguese 4000000.0
Name: max, dtype: float64
3000000.0

51

DataFrameGroupBy.filter()
• Return a copy of a DataFrame excluding elements from groups
that do not satisfy the boolean criterion specified by function.

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
 'foo', 'bar'],
 'B' : [1, 2, 3, 4, 5, 6],
 'C' : [2.0, 5., 8., 1., 2., 9.]})
grouped = df.groupby('A')
print(grouped.get_group('bar'))
print(grouped.get_group('bar')['B'].mean())
print(grouped.get_group('foo'))
print(grouped.get_group('foo')['B'].mean())
print(grouped.filter(lambda x: x['B'].mean() > 3.))

 A B C
1 bar 2 5.0
3 bar 4 1.0
5 bar 6 9.0
4.0
 A B C
0 foo 1 2.0
2 foo 3 8.0
4 foo 5 2.0
3.0
 A B C
1 bar 2 5.0
3 bar 4 1.0
5 bar 6 9.0

52

DataFrameGroupBy.apply()

• Apply certain function on the group elements

grouped = df.groupby('A')
print(grouped.apply(lambda x:x.describe()))

 B C
A
bar count 3.0 3.000000
 mean 4.0 5.000000
 std 2.0 4.000000
 min 2.0 1.000000
 25% 3.0 3.000000
 50% 4.0 5.000000
 75% 5.0 7.000000
 max 6.0 9.000000
foo count 3.0 3.000000
 mean 3.0 4.000000
 std 2.0 3.464102
 min 1.0 2.000000
 25% 2.0 2.000000
 50% 3.0 2.000000
 75% 4.0 5.000000
 max 5.0 8.000000

53

DataFrameGroupBy.apply()
(cont.)

Mean of B for bar = (2+4+6)/3 = 4
Mean of C for bar = (5+1+9)/3 = 5

54

DataFrameGroupBy.apply()
(cont.)

def f(group):
 return pd.DataFrame({'original': group,
 'demeaned': group - group.mean()})
grouped = df.groupby('A')
print(grouped['C'].apply(f))

55

Groupby()

• reset_index() can be used to reset the index to
decimal values starting from 0.

print(movies.groupby(['Country','Language']).Budget.agg([len,min,max]))

 len min max
Country Language
Australia English 18 2500000.0 150000000.0
Bahamas English 1 5000000.0 5000000.0
Belgium English 4 15000000.0 34000000.0
Brazil English 1 3000000.0 3000000.0
 Portuguese 2 4000000.0 4000000.0
...
USA English 1174 1400.0 263700000.0
 Hebrew 1 NaN NaN
 None 1 4000000.0 4000000.0
 Spanish 3 1200000.0 6000000.0
United Arab Emirates Arabic 1 125000.0 125000.0
[83 rows x 3 columns]

56

Groupby()

 print(movies.groupby(['Country','Language']).Budget.agg([len,min,max]).reset_index())

 Country Language len min max
0 Australia English 18 2500000.0 150000000.0
1 Bahamas English 1 5000000.0 5000000.0
2 Belgium English 4 15000000.0 34000000.0
3 Brazil English 1 3000000.0 3000000.0
4 Brazil Portuguese 2 4000000.0 4000000.0
..
78 USA English 1174 1400.0 263700000.0
79 USA Hebrew 1 NaN NaN
80 USA None 1 4000000.0 4000000.0
81 USA Spanish 3 1200000.0 6000000.0
82 United Arab Emirates Arabic 1 125000.0 125000.0
[83 rows x 5 columns]

57

Groupby() (cont.)

58

Groupby() (cont.)

59

Groupby() (cont.)

This warning is telling
you that pandas is
changing how it
handles callable
aggregation functions
like the built-in min
and max functions.

60

Groupby() (cont.)

Use ‘min’ and ‘max’ instead.
1. .agg[len, ‘min’, ‘max’]
Or
2. .agg[count, ‘min’, ‘max’]

61

Groupby()

print(movies.groupby(['Country','Language']).Budget.agg([len,min,max]).reset
_index().iloc[3])
print(movies.groupby(['Country','Language']).Budget.agg([len,min,max]).reset
_index().iloc[3]['max'])

Country Brazil
Language English
len 1
min 3000000.0
max 3000000.0
Name: 3, dtype: object
3000000.0

62

Sorting
• sort_values() function/method can be used to
sort dataframes according to certain column
values.
print(movies.sort_values('Country').iloc[:,:5])#sort all the
dataframe by the column Country, and display the first 5 columns

63

Sorting
print(movies.groupby(['Country'])['IMDB Score'].max())
print(movies.groupby(['Country'])['IMDB Score'].max().sort_values(ascending=False))
print(movies.groupby(['Country'])['IMDB Score'].agg([max]).sort_values('max',ascending=False))

Country
Australia 8.1
Bahamas 4.4
Belgium 7.1
.
.
Thailand 5.7
UK 8.6
USA 9.1
United Arab Emirates 8.2
Name: IMDB Score, dtype:
float64

Country
Canada 9.5
USA 9.1
Poland 9.1
.
.
5.6
Nigeria 5.6
Georgia 5.6
Bahamas 4.4
Name: IMDB Score, dtype:
float64

64

Sorting (cont.)

• sort_values() works on Dataframes or Series
objects

print(type(movies.groupby(['Country'])))
<class 'pandas.core.groupby.generic.DataFrameGroupBy'>
print(type(movies.groupby(['Country'])['IMDB Score']))
<class 'pandas.core.groupby.generic.SeriesGroupBy'>
print(type(movies.groupby(['Country'])['IMDB Score'].max()))
<class 'pandas.core.series.Series'>

65

Sorting
• sort_values() can sort by more than one column.
• sort_index() is used to sort elements by index.
print(movies.sort_values(['Language','Country']).iloc[:,:5])
print(movies.sort_values(['Language','Country']).loc
[:,['Title','Language','Country']].to_string())

 Title ... Country
884 The Square ... Egypt
845 The Brain That Sings ... United Arab Emirates
308 In the Land of Blood and Honey ... USA
1026 Kung Fu Killer ... China
1164 Z Storm ... Hong K

66

Missing Data

• Several Methods are available to deal with
missing data

 Title Year ... Reviews by Crtiics IMDB Score
963 Dawn Patrol 2014.0 ... 9.0 4.8
1497 10,000 B.C. NaN ... NaN 7.2
1529 Gone, Baby, Gone NaN ... NaN 6.6
1551 Preacher NaN ... 18.0 8.3

print(movies[pd.isnull(movies.Country)])

67

Missing Data (cont.)

 Title Year ... Reviews by Crtiics IMDB Score
963 Dawn Patrol 2014.0 ... 9.0 4.8
1497 10,000 B.C. NaN ... NaN 7.2
1529 Gone, Baby, Gone NaN ... NaN 6.6
1551 Preacher NaN ... 18.0 8.3

print(movies[pd.isnull(movies.Country)])

df.method() description

dropna() Drop missing observations

dropna(how='all') Drop observations where all cells is NA

dropna(axis=1, how='all') Drop column if all the values are missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values

fillna(0) Replace missing values with zeros

isnull() returns True if the value is missing

notnull() Returns True for non-missing values

68

Missing Data

• To select NaN entries you can use pd.isnull()
(or its companion pd.notnull()).

print(movies[pd.isnull(movies.Country)])

 Title Year ... Reviews by Crtiics IMDB Score
963 Dawn Patrol 2014.0 ... 9.0 4.8
1497 10,000 B.C. NaN ... NaN 7.2
1529 Gone, Baby, Gone NaN ... NaN 6.6
1551 Preacher NaN ... 18.0 8.3

69

Missing Data

• To select NaN entries you can use pd.isnull()
(or its companion pd.notnull()).

movies[movies.isnull().any(axis=1)].head()

 Title ... IMDB Score
1 3 Backyards ... 5.2
2 3 ... 6.8
4 A Turtle's Tale: Sammy's Adventures ... 6.1
7 All Good Things ... 6.3
10 Anderson's Cross ... 7.2

[5 rows x 19 columns]

70

Replacing Missing Values
• Replacing missing values is a common operation.
• fillna() provides a few different strategies for mitigating such
data Title Dawn Patrol

Year 2014.0
Genres Drama|Thriller
Language English
Country X
Duration 88.0
Budget 3500000.0
Gross Earnings NaN
Director Daniel Petrie Jr.
Actor 1 Chris Brochu
Actor 2 Jeff Fahey
Facebook Likes - Actor 1 795.0
Facebook Likes - Actor 2 535.0
Facebook likes - Movie 570
Facenumber in posters 0.0
User Votes 455
Reviews by Users 13.0
Reviews by Crtiics 9.0
IMDB Score 4.8
Name: 963, dtype: object

Process finished with exit code 0

movies.Country = movies.Country.fillna("X")
print(movies.iloc[963])

movies.Country.fillna("X",inplace = True)
print(movies.iloc[963])

71

Replacing Missing Values

Title A Turtle's Tale: Sammy's Adventures
Year 2010.0
Genres Adventure|Animation|Family
Language English
Country France
Duration 88.0
Budget Y
Gross Earnings Y
Director Ben Stassen
Actor 1 Ed Begley Jr.
Actor 2 Jenny McCarthy
Facebook Likes - Actor 1 783.0
Facebook Likes - Actor 2 749.0
Facebook likes - Movie 0
Facenumber in posters 2.0
User Votes 5385
Reviews by Users 22.0
Reviews by Crtiics 56.0
IMDB Score 6.1
Name: 4, dtype: object

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.
fillna.html

movies.fillna(“Y",inplace = True)
print(movies.iloc[4])

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html

72

Removing Records with Missing Values

• dropna() can be used to remove all the rows
with ‘NA’ values.

print(movies.shape) #(1604, 19)
movies.dropna(inplace=True)
print(movies.shape)#(1044, 19)

73

fillna()/Examples

df = pd.DataFrame([[np.nan, 2, np.nan, 0],
 [3, 4, np.nan, 1],
 [np.nan, np.nan, np.nan, 5],
 [np.nan, 3, np.nan, 4]],
 columns=list('ABCD'))

print(df)
df1 = df.fillna(method='ffill')
print(df1)

values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
df2 = df.fillna(value=values)
print(df2)

 A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
 A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4
 A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

74

Renaming

• lets you change index names and/or column
names

• Change column name

• Change index
✔Rarely used; set_index() can be used instead

movies.rename(columns={'IMDB Score':'IMDB_Score'},inplace=True)

movies.rename(index = {0:'m0',1:'m1'})

75

Combining

• Dataframes can be combined into one
Dataframe
✔ concat(), join() and merge() are useful methods for
this purpose.

76

Combining/Example

df1 = pd.DataFrame([[1, 2, 5, 0],
 [3, 4, 6, 1]],
 columns=list('ABCD'))
df2 = pd.DataFrame([[1, 1, 1, 1],
 [2, 2, 2, 2]],
 columns=list('ABCD'))
df4 = pd.DataFrame([[1, 1, 1, 1],
 [2, 2, 2, 2]],
 columns=list('ABCF'))

77

Combining/concat()

• Concatenate along an axis.
df3 = pd.concat([df1,df2],ignore_index=True)
print(df3)

df3 = pd.concat([df1,df2],axis=1)
print(df3)

 A B C D
0 1 2 5 0
1 3 4 6 1
2 1 1 1 1
3 2 2 2 2
 A B C D A B C D
0 1 2 5 0 1 1 1 1
1 3 4 6 1 2 2 2 2

78

Combining/concat()
(cont.)

• Concatenate with different columns labels.

df3 = pd.concat([df1,df4],sort=False,ignore_index=True)
print(df3)

 A B C D F
0 1 2 5 0.0 NaN
1 3 4 6 1.0 NaN
2 1 1 1 NaN 1.0
3 2 2 2 NaN 2.0

79

Combining/join()

• Concatenate with different columns labels

df3 = df1.join(df4,lsuffix="_X",rsuffix="_Y")
print(df3)

 A_X B_X C_X D A_Y B_Y C_Y F
0 1 2 5 0 1 1 1 1
1 3 4 6 1 2 2 2 2

80

References
• https://pandas.pydata.org/docs/
• https://pandas.pydata.org/pandas docs/stable/user_guide/groupby.html

https://pandas.pydata.org/docs/
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html

Computer Applications Lab
0907331

LabSheet 7: Pandas

Answer the following questions using the movies dataset. The dataset is available on MS Teams under:
Files → Labsheets → Labsheet7.

Notes:

• To read Excel files, you must install the xlrd package in PyCharm.

• Some questions may require searching for new methods not covered in the lab slides.

Task 1
1. Find the median and standard deviation of the Reviews by Users.

2. Find the minimum number of Facebook Likes - Actor 1 for each language.

3. List all Mexican movies that are in the Spanish language.

4. List the name of the Director and the Country for the movie "Green Zone".

5. Find the number of movies for each Actor 2.

6. Find the year with the highest number of movie releases.

7. Find the average IMDB score and total budget for movies in the Comedy|Drama|Romance genre.

8. Find the percentage of movies that have a one-word title.

9. List all Comedy/Family movies.

10. Remove the columns Facebook Likes - Actor 1 and Facebook Likes - Actor 2 (use the drop
method).

11. Replace missing values in the Budget column with the average budget, and missing values in the
IMDB Score column with the maximum IMDB score.

12. Add a new column Reviews to the data frame as the sum of Reviews by Users and Reviews by
Critics.

13. Rename the column IMDB Score to Norm10_IMDB and divide all values in this column by 10.

14. Write the modified data frame to an Excel file named movies_updated.xls. Ensure all updates
from questions 10 to 13 are reflected in the saved file.

1

Task 2
• The Excel files grades.xls and answer_details.xls contain exam data for a specific course.

• The exam was conducted in two sessions: Session_A and Session_B. Normally, a student may only
take the exam in one session.

• The file grades.xls contains the student ID and their grade in the respective session. A dash (-)
indicates that the student did not take the exam in that session.

• The file answer_details_session_a.xls contains each student’s total grade and their answers to
individual questions labelled Q1, Q2, etc. A dash ("-") indicates a question was not answered.

Based on the above, answer the following:

1. What are the IDs of students who answered all questions in Session A?

2. How many students scored more than 20 in both sessions and have an ID starting with 18xxxx?

3. How many students in Session B did not answer Q8 and Q9 correctly?

4. Some students experienced technical issues during the exam and could not answer all questions.
Others did not take the exam at all. Create a Makeup Exam List of students who either:

• Did not take the exam, or

• Answered fewer than six questions.

2

1

Data Visualisation using Matplotlib
Prepared by

Dr Mohammad Abdel-Majeed
(Converted to .odp and Modified by Dr Talal A. Edwan)

Note: This version of the slides is not intended for printing due to the use of coloured content on a dark grey background.

2

Outline
• Data Visualisation
• Matplotlib.pyplot

✔ Line plot
✔Bar Plot
✔ Scatter Plot
✔Histogram Plot
✔Pie Plot
✔ SubPlot
✔Annotation
✔Writing mathematical expressions
✔ Image tutorial

• Seaborn

3

Data Visualisation

• Human brain Process information faster when
it is in graphical form.

• Accessible way to see and understand trends,
outliers, and patterns in data.

• Data visualisation tools are essential to
analyse and interpret massive amounts of
information to make data-driven decisions.

4

Data Visualisation (cont.)

https://datajournalism.com/read/handbook/one/understanding-data/using-data-visualization-to-find-insights-in-data

https://datajournalism.com/read/handbook/one/understanding-data/using-data-visualization-to-find-insights-in-data
https://datajournalism.com/read/handbook/one/understanding-data/using-data-visualization-to-find-insights-in-data

Matplotlib.pyplot

• Collection of command style functions that
make matplotlib work like MATLAB.

• Various states are preserved across function
calls, so that it keeps track of things like:
✔ The current figure and plotting area.
✔ The plotting functions are directed to the current

axes.

5

6

Examples

7

Examples

✔ https://matplotlib.org/tutorials/introductory/sample_plots.html
✔ https://matplotlib.org/3.2.1/gallery/index.html
✔ https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html

(Detailed Examples).

1. Introduction to Matplotlib.

2. Creating basic 2D plots.

https://youtu.be/PPvAmpilm4k?feature=shared

3. Creating basic 3D surface plots.

https://youtu.be/zV2gJyDqR5U?feature=shared

https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.2.1/gallery/index.html
https://matplotlib.org/3.2.1/gallery/index.html
https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html
https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html
https://youtu.be/PPvAmpilm4k?feature=shared
https://youtu.be/zV2gJyDqR5U?feature=shared

8

Line Plot
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()

9

Line Plot (cont.)

plt.plot([1, 2, 3, 4], [1, 4, 9, 16)
plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

10

Line Plot (cont.)
evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)
red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

11

Line Plot (cont.)
import numpy as np
evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)
red dashes, blue squares and green triangles
plt.plot(t, t, 'r--',label='F1')
plt.plot(t, t**2,'bs',label='F2')
plt.plot(t, t**3, 'g^',label='F3')
plt.axis([0,7,0,150])
plt.legend()
plt.show()

import numpy as np
t = np.arange(0., 5., 0.2)
plt.plot(t, t, 'r-')
plt.plot(t, t**2,'bs')
plt.plot(t, t**3, 'g^')
plt.axis([0,7,0,150])
plt.legend(['F1', 'F2', 'F3'])
plt.show()

12

Line Plot (cont.)

13

Bar Plot
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 35, 30, 35, 27]
men_std = [2, 3, 4, 1, 2]
width = 0.35 # the width of the bars: can also be len(x)
sequence
fig, ax = plt.subplots()
ax.bar(labels, men_means, width, yerr=men_std, label='Men')
ax.set_ylabel('Scores')
ax.set_title('Men Scores')
plt.show()

14

Bar Plots (cont.)

15

Bar Plot (cont.)
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 35, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]
men_std = [2, 3, 4, 1, 2]
women_std = [3, 5, 2, 3, 3]
width = 0.35
fig, ax = plt.subplots()

ax.bar(labels, men_means, width, yerr=men_std, label='Men')
ax.bar(labels, women_means, width, yerr=women_std,
bottom=men_means, label='Women')
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.legend()
plt.show()

16

Bar Plot (cont.)

17

Scatter Plots

plt.scatter([1, 2, 3, 4], [1, 4, 9, 16])
plt.axis([0, 6, 0, 20])
plt.show()

18

Scatter Plot
• We can vary different parameters:

✔ Dot size → s
✔ Color → c
✔ Dot shape → marker
data = {'a': np.arange(50),
 'c': np.random.randint(0, 50, 50),
 'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100
plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.show()
plt.savefig(r'scatter.png')

19

Scatter Plot (cont.)

20

Scatter Plot (cont.)

data = {'a': np.arange(50),
 'c': np.random.randint(0, 50, 50),
 'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100
plt.scatter('a', 'b', c ='c' ,s='d',
data=data,cmap='viridis')
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.colorbar(); # show color scale
plt.show()

21

Scatter Plot (cont.)

22

Histogram
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(10 ** 7)
mu = 121
sigma = 21
x = mu + sigma * np.random.randn(1000) # randn mu=0, sigma=1
num_bins = 100
n, bins, patches = plt.hist(x, num_bins, density=1, color='green', alpha=0.7)

y = ((1 / (np.sqrt(2 * np.pi) * sigma)) *
 np.exp(-0.5 * (1 / sigma * (bins - mu)) ** 2))

plt.plot(bins, y, '--', color='black')
plt.xlabel('X-Axis')
plt.ylabel('Y-Axis')
plt.text(60, .025, r'$\mu=121,\ \sigma=21$')
plt.axis([40, 200, 0, 0.03])
plt.grid(True)
plt.title('matplotlib.pyplot.hist() function Example\n\n',
 fontweight="bold")
plt.show()
#counts, bin_edges = np.histogram(x, bins=5)

23

Histogram (cont.)

24

Pie
values = [25000,30000]
Ans= ['Yes','No']
plt.pie(values,labels = Ans,autopct = '%1.1f%
%',startangle=90,explode =(0,.1))
plt.legend()
plt.title('Survey Results')
plt.show()

25

Stackplot

x = ['Q1', 'Q2', 'Q3']
y1 = [1000, 2000, 3000]
y2 = [1000,4000,10000]
y3 = [1000,1500,1800]

y = np.vstack([y1, y2, y3])

labels = ["China ", "US", "Europe"]
fig, ax = plt.subplots()
ax.stackplot(x, y1, y2, y3, labels=labels) #ax.stackplot(x, y, labels=labels)

ax.legend(loc='upper left')
plt.show()

26

Stackplot

27

Subplots

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]

plt.figure(figsize=(9, 3))

plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

28

Subplots (cont.)

29

Subplots (cont.)

def f(t):
 return np.exp(-t) * np.cos(2*np.pi*t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'ob', t2, f(t2), 'k')
plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

30

Subplots (cont.)

• Another way to create subplots

fig, ax = plt.subplots(21)
ax[0].plot(t1, f(t1), 'ob', t2, f(t2), 'k')
ax[1].plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

31

Subplots (cont.)

32

Subplots (cont.)

fig, ax = plt.subplots(2,2)
ax[0,0].plot(t1, f(t1), 'ob', t2, f(t2), 'k')
ax[1,1].plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

33

Subplots (cont.)

34

Annotate

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
 arrowprops=dict(facecolor='black',
shrink=0.05),
)

plt.ylim(-2, 2)
plt.show()

35

Annotate (cont.)

36

Writing mathematical expressions
• Any text element can use math text. You should use raw

strings (precede the quotes with an 'r'), and surround the
math text with dollar signs ($)
plt.title(r'$\alpha > \beta$') #

plt.title(r'$\alpha_i > \beta_i$')#

plt.title(r'$\alpha^{ic} > \beta_{ic}$') #

plt.title(r'$\sum_{i=0}^\infty x_i$') #

plt.title(r'$\frac{5 - \frac{1}{x}}{4}$') #

plt.title(r'$\sqrt{2}$') #

plt.title(r'$\sqrt[3]{x}$') #

37

Image tutorial
• Matplotlib includes the image module for image manipulation

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('cat.png')
print(img)
print(type(img),size(img))

[[[0.24313726 0.2901961 0.36078432
1.]
 [0.24705882 0.29411766 0.3647059
1.]
...
 [0.15686275 0.15686275 0.18431373
1.]
 [0.05490196 0.05490196 0.05490196
1.]]]

Process finished with exit code 0

38

• Plotting numpy arrays as images

imgplot = plt.imshow(img)
plt.show()

Image tutorial (cont.)

39

• Applying pseudocolor schemes to image plots. Pseudocolor can be a
useful tool for enhancing contrast and visualizing your data more easily.
This is especially useful when making presentations of your data using
projectors - their contrast is typically quite poor.

lum_img = img[:, :, 0]
plt.imshow(lum_img)
plt.show()

Image tutorial (cont.)

40

• With a luminosity (2D, no color) image, the default colormap is applied.
The default is called viridis. There are plenty of others to choose from.

plt.imshow(lum_img,cmap="hot")

Image tutorial (cont.)

41

 that you can also change colormaps on existing plot objects using
the set_cmap() method

imgplot = plt.imshow(lum_img)
plt.colorbar()
plt.show()

Image tutorial (cont.)

42

Seaborn

• if Matplotlib “tries to make easy things easy and
hard things possible”, Seaborn “tries to make a
well-defined set of hard things easy too”.

• Seaborn helps resolve the two major problems
faced by Matplotlib.
✔Default Matplotlib parameters.
✔Working with data frames.

• Starting point:
https://www.tutorialspoint.com/seaborn/seaborn_tutorial.pdf

https://www.tutorialspoint.com/seaborn/seaborn_tutorial.pdf

Computer Applications Lab
0907331

LabSheet 8: Matplotlib

Please answer the following questions using the sales, cars, uploads, and movies datasets. The datasets are
available on MS Teams.

Notes:

• Grading will be based on the correctness, clarity, and completeness of the figure elements, including labels,
titles, and legends (if needed).

• The figures should be presented in the same order as the questions.

• Fill any missing values in each column with the average value of that column.

Tasks

1. Using the sales.xlsx dataset:

a) Draw a stack plot to show sales per month.

b) Draw a pie chart representing the percentage of sales for each product in August.

c) Determine the quarterly Sugar sales and represent them as a bar plot.

2. Using the cars.xlsx dataset:

a) Draw a pie chart showing the percentage distribution of car displacements in the following ranges: 0–100,
100–200, 200–300, 300–400, over 400.

b) Draw a stacked bar plot illustrating the horsepower ranges for each country as shown in figure 1a.

3. Using the uploads.csv dataset (effects of COVID-19 on trade):

a) Draw a scatter plot showing the total cumulative cost for milk powder, butter, and cheese exports con-
ducted on 27/11/2015, where the value exceeds 9000. See figure 1b for an example.

b) Draw a stacked bar plot showing the sum of values for the two trade directions (Exports and Imports) for
the years 2015 to 2021, inclusive. See figure 1c for an example.

1

(a) Cars’ horsepower ranges.

(b) Cumulative cost. (c) Summation of values.

Figure 1: Examples.

4. Using the movies.xls dataset:

a) Draw a pie chart for the movies produced in Germany, showing the distribution based on language.

b) Draw a bar chart showing the number of movies produced by Spain, France, Canada, and China for each
year from 2011 to 2016, inclusive.

c) Draw a scatter plot representing the relationship between budget and IMDB score for movies produced
by France. The size of each point should be based on movie duration, and the colour based on the first
letter of the movie title.

d) Draw a pie chart representing the percentage of movies for each genre. Note: if a movie belongs to both
Action and War genres, it should be counted in both groups.

2

	Chapter 1 Python Installation IDEs, Pycharm and Jupyter Notebo
	Outline
	Installing Python
	Slide 4
	Slide 5
	Python programming using:
	Installing Pycharm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Choosing interpreter and installing packages
	Slide 13
	Slide 14
	Slide 15
	Your first python program on Pycharm
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Debugger
	Slide 24
	Slide 25
	Python programming using: (2)
	Installation And Setup
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Install Python Libraries In Anaconda
	Slide 37
	Slide 38
	Slide 39
	Anaconda Navigator
	Slide 41
	Your first python program on Jupyter notebook
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Chapter 2 Data Types and Variables
	Outline
	Print statements
	Comment
	Variables
	Slide 6
	Slide 7
	Naming errors
	Slide 9
	Slide 10
	Numeric Variables
	Slide 12
	Slide 13
	Slide 14
	Boolean Variables
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Strings
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	User input
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Lists, Tuples, Dictionaries and Set (Chapter 4)
	Outline
	List in Python
	List in Python (2)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Statistics with list of numbers
	Slide 31
	Slide 32
	Slide 33
	Looping Through a Slice
	Slide 35
	Tuples
	
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Dictionaries
	Dictionaries (2)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Set
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Control Flow and Error Exception (CH5 and CH7)
	Outline
	Conditional statements: if, elif, and else.
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	for loops
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	while loops.
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Errors and exceptions.
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Functions & Files
	Outline
	Functions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Files
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Writing to a File
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Numpy (Numerical Python) Prepared by Dr. Mohammad Abdel-majeed
	Outline
	Introduction
	Numpy
	ndarrays
	Slide 6
	Random Numbers in numPy
	Slide 8
	Create ndarray-Example
	Create ndarray-Example (2)
	Create ndarray-Example (3)
	Create ndarray-Example (4)
	NumPy data types 1
	Create ndarray-Example (5)
	Change array data type
	Indexing and Slicing
	Indexing and Slicing (2)
	2d array
	Indexing with slices – 2D Array (Examples)
	Indexing with slices – 2D Array (Examples) (2)
	Indexing with slices – 2D Array (Examples) (3)
	Indexing elements in a numpy array
	Two- dimensional array slicing
	3d 2x2x2
	Indexing
	Slide 26
	Indexing (3)
	Indexing (4)
	Indexing (5)
	Indexing (6)
	Slicing
	Slicing (2)
	Slicing (3)
	Slicing (4)
	Slide 35
	Integer Array Indexing
	Integer Array Indexing (2)
	Integer Array Indexing (3)
	Integer Array Indexing (4)
	Boolean Array Indexing
	Stacking
	Stacking (2)
	Broadcasting/Mathematical operations
	Elementwise opwerations/Mathematical (Between arrays)
	Elementwise operations/mathematical
	Elementwise Operations (scalar)
	Elementwise Operations (scalar) (2)
	Elementwise Operations?? Statistics(max,min ,sum)
	Inner Product
	Axis operations
	Axis operations (2)
	Slide 52
	Axis operations/sum
	Relational operators and numpy
	Where()
	Where() (2)
	Relational operators and numpy (with where)
	Boolean Arrays
	Sorting
	Unique
	numpy.in1d
	Get index (argsort(),argwhere(),argmax())
	Get index (argsort(),argwhere(),argmax()) (2)
	Save numpy array
	Saving multiple numpy arrays
	Loading text data into numpy array
	Loading text data into numpy array (2)
	Scipy
	Slide 69
	Scipy (2)
	Linear Algebra Numpy.linalg
	References
	File Content (sales.txt):
	Step 1: Reading and Cleaning the Data
	Step 2: Calculate Total Weekly Sales per Product
	Expected Output:
	Step 3: Find the Day with the Highest Total Sales
	Expected Output:
	Step 4: Identify the Product with the Highest Average Sales
	Expected Output:
	Step 5: Print a Formatted Sales Report
	Expected Output:
	Step 6: Analyze Minimum Sales per Product
	Expected Output:
	Step 7: Weekdays vs Weekends Sales Comparison
	Weekdays (Mon–Fri)
	Weekends (Sat–Sun)
	Compare which period generates higher revenue.
	Expected Output:
	Step 8: Add a New Product with Random Sales
	Expected Output Example:
	Step 9: Indexing and Slicing Operations
	(a) Extracting Data Slices
	Expected Output:
	(b) Axis Operations

	Find the max sale per product (axis=1).
	Find the max sale per day (axis=0).
	Expected Output:
	(c) Conditional Selection (np.where)
	Expected Output:
	(d) Fancy Indexing & Boolean Masking
	Expected Output:
	Step 10: Sorting and Ranking
	Expected Output:
	Step 11: Locating Data Points
	Expected Output:
	Step 12: Saving and Loading Arrays
	Expected Output:
	Step 13: Exporting and Importing Text Data
	Expected Output:
	Pandas Prepared by Dr. Mohammad Abdel-majeed Updated by Dr. Sam
	Outline
	Pandas
	Slide 4
	Slide 5
	Pandas Data Structures
	Series
	Slide 8
	Dataframes
	Slide 10
	DataFrames with Index
	Reading Data Files
	Slide 13
	Slide 14
	Reading Data Files (2)
	Other read_*
	Exploring the Data
	Slide 18
	Exploring the Data (2)
	Exploring the Data (3)
	Slide 21
	Exploring the Data/ Data Frames attributes
	Add Columns Titles
	Add Columns Titles (2)
	Data Access/Column Access
	Data Access/Column Access (2)
	Slide 27
	Slide 28
	Renaming Columns
	Indexing
	Index Based Selection (iloc)
	Label Based Selection (loc)
	set_index()
	set_index() (2)
	Selection
	Selection/Examples
	Assigning Data
	Data Analysis describe()
	Data Analysis describe() (2)
	Data Analysis describe() (3)
	Data Analysis/Summary describe()
	Data Analysis/Basic Statistics
	Data Analysis/Summary Aggregation
	Data Analysis/Summary describe() (2)
	Grouping
	Grouping (2)
	Grouping (3)
	Grouping (4)
	Grouping and Aggregation
	Grouping (5)
	DataFrameGroupBy.filter()
	DataFrameGroupBy.apply()
	Slide 53
	DataFrameGroupBy.apply() (2)
	Groupby()
	Slide 56
	Groupby() (2)
	Slide 58
	Slide 59
	Slide 60
	Groupby() (3)
	Sorting
	Sorting (2)
	Sorting (3)
	Sorting (4)
	Missing Data
	Slide 67
	Missing Data (2)
	Missing Data (3)
	Replacing Missing Values
	Replacing Missing Values (2)
	Removing Records with Missing Values
	fillna()/Examples
	Renaming
	Combining
	Combining/Example
	Combining/concat()
	Combining/concat() (2)
	Combining/join()()
	References
	Data Visualization using Matplotlib Prepared by Dr. Mohammad Ab
	Outline
	Data Visualization
	Data Visualization (2)
	Matplotlib.pyplot
	Examples
	Examples (2)
	Line Plot
	Line plot
	Line Plot (2)
	Line Plot (3)
	Line Plot (4)
	Bar plots
	Bar plots (2)
	Bar plots (3)
	Bar Plots
	Scatter plot
	Scatter Plot
	Scatter Plot (2)
	Scatter Plot (3)
	Scatter Plot (4)
	Histogram
	Histogram (2)
	Pie
	Stackplot
	Stackplot (2)
	Subplots
	Subplots (2)
	Subplots (3)
	Subplots (4)
	Subplots (5)
	Subplots (6)
	Slide 33
	Annotate
	Annotate (2)
	Writing mathematical expressions
	Image tutorial
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Seaborn

