Chapter 1
Python Installation IDEs,
Pycharm and Jupyter Notebook

Outline

* Installing Python

* Python programming using:
" Pycharm
O Installing python
O Choosing interpreter and installing packages

O Your first python program on Pycharm
O Debugger
" Anaconda
O Installation And Setup
O Install Python Libraries In Anaconda
© Anaconda Navigator
O Your first python program on Jupyter notebook

» |nstalling Python

Python is a interpreted, high-level, general-purpose programming
language.

* Go to https://www.python.org/downloads/, the Python organization
website, and click on “Download Python x.x.x” button, which
downloads the latest offered version. There are Python versions for
different OS other than Windows

& python’ . I (-

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.10.5

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macO5, Other

Want to help test development versions of Python? Prereleases,

Dockerimages

Looking for Python 2.7? See below for specific releases

https://www.python.org/downloads/

* When the executable file is downloaded, run it.

* Make sure to enable “Add Python x.x to PATH” in this window, then
click on “Install Now".

& Python 3.8.0 (32-bit) Setup — b

J Install Python 3.8.0 (32-bit)
Select Install Now to install Python with default settings, or choose

Customize to enable or disable features.

¥ Install Now
Ch\Users\Doomer\AppDatatLocal\Programs\Python' Python38-32
Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

python
for Install launcher for all users (recommended)

win d OWS [Add Python 3.8 to PATH o

* Python programming using:

* Pycharm

It is a integrated development environment (IDE) used in computer
programming, specifically for Python.

Installing Pycharm

* Goto
https://www.jetbrains.com/pycharm/download/#section=windows

And download community version package

i
E s,

el Download PyCharm

4 Windows 1] I
Professional Community
Full-featured IDE Lightweight IDE
for Python & Web tor Python & Scientific

devalapment development

https://www.jetbrains.com/pycharm/download/#section=windows

* Run the executable file

E PyCharm Community Edition Setup —

PC

Welcome to PyCharm Community
Edition Setup

Setup will guide you through the installation of PyCharm
Community Edition,

It is recommended that you cose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue.

* Choose destination folder to install

B PyCharm Community Edition Setup — >
Choosze Install Location
Choose the folder in which to install PyCharm Community Edition.

Setup will install PyCharm Community Edition in the following folder. To install in a different
folder, dick Browse and select another folder, Clid: Mext to continue,

Destination Folder

=

Charm Community Edition 2019.3.1 Browse...

Space required: 667.5 MB
Space available: 451.0 GB

* When installing finishes, click next on these windows.

E PyCharm Community Edition Setup

Installation Options
Configure your PyCharm Community Edition installation

Create Desktop Shortout

a4-hit launcher

Update context menu

[] Add "Open Folder as Project”

Create Associations

L] .py

Update PATH variable (restart needed)

[]add launchers dir to the PATH:

E PyCharm Community Edition Setup — >
Choose Start Menu Folder
Choose a Start Menu folder for the PyCharm Community Edition
shortcuts.

Select the Start Menu folder in which you would like to create the program's shortouts, You
can also enter a name to create a new folder.

|

Accessibility ~
Accessories

Administrative Tools

Bethesda Softworks

Bootstrap Studio

Cisco Packet Tracer

Clean Master

DriverFix

Evernote

Git

GitHub, Inc

Intel W

< Back Install Cancel

10

* Reboot your computer

E? PyCharm Community Edition Setup -

PC

Completing PyCharm Community
Edition Setup

Your computer must be restarted in order to complete the
installation of PyCharm Community Edition. Do you want to
reboot now?

{®) Reboot now

{_J1 want to manually reboot later

< Back Cancel

11

Choosing interpreter and installing
packages

* Interpreter is a program that reads and executes code.
* To choose interpreter, open Pycharm and create a new project.

* File list -> Settings, then click on Project Interpreter under Project:
ProjectName list =) e

Project: testS * Project Interp

> Appearance & Behavior Project Interpreter: | %g# Python 3.
Keymap

| I:_ditl:l'r F' :L

ackage
Plugins pip

* Version Control

¥ Project: test virtualenv

Project Interpreter
Project Structure
B Build, Execution, Deployment
P Languages & Frameworks
k> Tools
12

* Then choose an interpreter from the list in the top which represents
the global python interpreter installed.

Project: pythonProject1 Python Interpreter

Appearance & Behavior
Keymap

» Editor
Plugins

* Version Control

~ Project: pythonProject1

Python Imterpreter

s H'.l I'.I " E e t i' L, r}t"l.:-|-::-','r!'.1 'rl.‘
» Languages & Frameworks
& r-:.u::-|'\.-

Advanced Settings

* To install packages to use in your project, go to the same Project
Interpreter window as you did before.

* You can see the packages you have in a list. To add more, click on the
+ sign on the left side.

Project: pythonProject1 * Python Interpreter

> Appearance & Behavior - :
Python Interpreter: | %% Python 3,10 (pythonProject1)
Keymap
> Editor
Plugins
Latest version
» Version Control
 Project: pythonProject1
Python Interpreter
Project Structure
> Build, Execution, Deployment
» Languages & Frameworks

» Tools

et-umilfile

fonttools

* Write the name of the package you want in the search bar, a list of
packages appears, click on the one you want then click the Install
Package button.

Your first python program on
Pycharm

* Run the Pycharm application, then click on Create New Project

PyCharm

= Open

16

* Choose or create a folder

>
»
>
>
»
>
>
»
>
>
>
>
>
¥

All Users

* Create a new python file by right clicking the name of the folder,
choose New then choose Python File.

ift+Insert

Mew

Find in Path...
in Path...

4

Ctrl+Alt+L

Cirl+/

Ctrl+Alt+F12

Ctrl+D
3

* Name youir file, Python files have the extension .py

Mew Python file

% hellg|

fe Python file
& Python unit test

@ Python stub

19

* A print() function prints a message to the screen

20

* To run the program, right click on the file name then choose Run

‘hello’.

hello

Delet

File Path Ctrl+Alt+F12

en in Terminal

Ctrl+D

21

* The result will appear on the console.

hello world

Process finished with exit code @

22

Debugger

* A tool used to test and find bugs in programs.

* Place breakpoints, which work as stop signs, by clicking the space to
the left of the line.

23

* To start the debugger, right click on the name of the file in browsing
list, then click on debug ‘FileName'.

External Libraries

Scratches and Consoles

»

b

Ctrl+ Alt+L
Ctrl+ Alt+ 0
Delete

Ctrl+5hift+F10

File Path Ctrl+Alt+F12

24

* A window appears in the lower side of the screen, click on the
Resume program button to continue after the breakpoint where the
program stopped.

* Note you can see the value of the variables and how it changes during
the program.

Debug: e test
Debugger
Frames

MainThread

IO <medule>, test. py:3

e]

5:Debug E&TODC B Terminal %@ Python Console

25

Python programming using:

* Anaconda

Anaconda is the data science platform for data scientists, IT
professionals and business leaders of tomorrow. It is a distribution
of Python, R, etc. With more than 300 packages for data science, it
becomes one of the best platforms for any project.

Installation And Setup

* To install anaconda go to https://www.anaconda.com/distribution/.

J ANACONDA. Products Pricing Solutions Resources Partners Blog Company

Individual Edition is now |
ANACONDA DISTRIBUTION Anaconda Distribution
The world's most popular open-
source Python distribution platform For Windows

Python 3.9 « 64-Bit Graphical Installer « 594 MB

Get Additional Installers

=l &0

27

https://www.anaconda.com/distribution/

* Choose a version suitable for you and click on download. Once you

complete the download, open the setup.

2 Anaconda3 2022.05 (64-bit) Setup —

(") ANACONDA

Welcome to Anaconda3 2022 05
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2022,05 {54-hit).

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your

computer.

Click Mext to continue,

28

* Follow the instructions in the setup. Don’t forget to click on add
anaconda to my path environment variable.

2 Anaconda3 2022.05 (84-bit) Setup — e 2 Anaconda3 2022.05 (84-bit) Setup — e

. License Agreement 1 . Select Installation Type

J ANACONDA Flease review the license terms before installing Anaconda3 ._) ANACONDA Pleasze select the type of installation you would like to perform for
2022.05 (64-hit). Anaconda3 2022.05 (64-hit],

Press Page Down to see the rest of the agreement.

E oo m—mmm—m——mmmm—mmmmmmmmmmmmmmmomooo - . | tnstall for

(®) Just Me {recommended)
Copyright 2015-2022, Anaconda, Inc.

All rights reserved under the 3-dause BSD License: | (O All Users (requires admin privieges)

This End User License Agreement (the "Agreement”) is a legal agreement between you
and Anaconda, Inc., ("Anaconda”) and governs your use of Anaconda Distribution (which
was formerly known as Anaconda Individual Edition). W

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 2022.05 (64-bit).

= Back Cancel i < Back Cancel

* Create a new folder on drive D or E, then choose this folder to install

Anaconda

2 Anacondad 2022.05 (64-bit) Setup

i) ANACONDA

Choose Install Location

X

Choose the folder in which to install Anaconda3 2022.05 (64-bit).

Setup will install Anaconda3 2022.05 (64-hit) in the following folder. To install in a different
folder, dick Browse and select another folder. Clidk Mext to continue,

Destination Folder

| E:\anaconda 20224

| | Browse,..

Space reguired: 3.5GB
Space available: 209, 3GB

< Back

MNext =

Cancel

30

2 Anaconda3 2022,05 (64-bit) Setup —

1 Advanced Installation Options
;i_) ANACONDA Customize how Anaconda integrates with Windows

Advanced Options
Add Anaconda3 to my PATH environment variable

Mot recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-hit)". This "add to PATH™ option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

Reqgister Anaconda3 as my default Python 3.9

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.9 on the system,

Anaconda, Inc,

= Back Install

Cancel

31

* Follow the instructions in the setup. Don’t forget to click on add
anaconda to my path environment variable. After the installation is
complete, you will get a window like shown in the image below.

D

. Installation Complete
J ANACONDA Setup was completed successfully.

Completed
Processed E:\anaconda 2022Menuinotebook, json successfully, ~

Processed E:\anaconda 2022Wenuipowershell_shortout.json successfully,

Processed E:\anaconda 2022'\Menuspyder_shortout.json successfully,

Execute: "Er\anaconda 2022\pythonw.exe”™ € -5 "E:lanaconda 2022'LibY_nsis.py™ m...
Running post install. ..

Execute: "E:'anaconda 2022\pythorw.exe” £ -s "E:\anaconda 2022WLibY_nsis.py" p...
Execute: "E:'anaconda 2022\pythonw.exe” € -s "E:\anaconda 2022'LibY_nsis.py” a...
Execute: "Es\anaconda 2022\pythonw.exe” € -5 "E:'anaconda 2022\pkas', co-confi...
Created uninstaller: E:\anaconda 2022\Uninstall-Anaconda3.exe

Completed

< Back Mext = Cancel

= Anacenda3 2022.05 (B4-hit) Setup — >

. Anaconda3 2022 05 (64-bit)
3 ANACONDA Anaconda + JetBrains

Working with Python and Jupyter is a breeze in DataSpell. Itis an IDE designed for
exploratory data analysis and ML, Get better data insights with Dataspell,

DataSpell for Anaconda is available at:

https: /fwww.anaconda. com/dataspell

-

>y

!

-

") ANACONDA.

b

32

* After finishing the installation, open anaconda prompt and

type jupyter notebook.

AE Access 2016
B Active@ Boot Disk

A~ Adobe Reader XI

0 Alarms & Clock

- Altera

B Anaconda3 (64-bit)

Anaconda Navigator (anaconda 2022)
MNew

Anaconda Mavigator (anaconda)

Anaconda Navigator (anaconda3)

= Anaconda Powershell Prompt (anac...
New

"] Anaconda Powershell Prompt (anac...
] Anaconda Powershell Prompt (anac...
[Anaconda Prompt (anaconda 2022)
[Anaconda Prompt (anaconda)

] Anaconda Prompt (anaconda3)

33

B Anaconda Prompt (anaconda) - jupyter notebook — O x

~ notebook
Ju Lab Hfhhnwlnn loade

Appf h::ﬁ.
ebookApp] or htt

ﬁhDD’Lpp_ Use Con

-11568-open.html

* You will see a window like shown in the image below.

* If this window do not show up, use one of the links in the Anaconda
prompt shown in the previous page

- JUp}f‘tEf Quit Logout

Files Running Clusters

Select items to perform actions on them. Upload || New w || &
(J0 |~ W Mame & | | Last Modified File size
[[O 3D Objects 2 months ago

[[O anaconda3 8 months ago

Install Python Libraries In Anaconda

* Open anaconda prompt and check if the library is already installed or
not.

B ~nacenda Frompt (anacondal - python

:083) [M5C v.1916 &4 kit (AMDE4)] :: Anaconda, Inc. on win32
"license"” +or more in-crmation.

* Since there is no module named numpy present, we will run the

(base) C:\Users‘\Abeer Awad>coda install numpy

* You will get the window shown in the image once you complete the
installation.

CEEE e g e SRR E RN A

* Once you have installed a library, just try to import the module again
for assurance.

(base) C:WUsers‘\Abeer Awad»python

t, Apr 13 2821, 15:88:83) [M5C v.1916 64 bit (AMD64)] :: Inc. on win32
yright", "credits" or "license"™ for more information.

Anaconda Navigator

* Anaconda Navigator is a desktop GUI that comes with the anaconda
distribution. It allows us to launch applications and manage conda
packages, environment and without using command-line commands.

0 Alarms & Clock

- Altera

- Anaconda2 (64-bit)
Mew

Anaconda Navigator (anaconda 2022)
Anaconda Mavigator (anaconda)

Anaconda Navigator (anaconda3)

= Anaconda Powershell Prompt (anac...
Mew

™1 Anaconda Powershell Prompt (anac...

™1 Anaconda Powershell Prompt (anac...

40

.:) Anaconda Mavigater
File Help

) ANACONDA NAVIGATOR

. Environments

L]
W Learning

- Community

ANACONDA

Secure your software
supply chain from
the

Upgrade Mow

End-to-end package
security, guaranteed

Documentation

Anaconda Blog

w o o>

Applicakions on |

base (root)

A4 Channels

CMD.exe Prompt
0.1.1

Run a cmd.exe terminal with your current
environment From Navigator activated

| Launch |

Powershell Prompt

0.0.1
Run a Powershell terminal with your
current environment From Mawigator
ackivated

|. Launch |

Datalore

Online Data Analysis Tool with smart
coding assistance by JetBrains. Edit and run
your Python notebooks in the cloud and
share them with your team.

| Launch |

PyCharm Community

2021.2.3
An IDE by JetBrains For pure Python
development. Supports code completion,
listing, and debugging.

|. Launch |

IBM Watson Studio Cloud

IEM Watson Studio Cloud provides you the
tools to analyze and visualize data, to
cleanse and shape data, to create and train
machine learning meodels. Prepare data and
build models, using open source data
science tools or '..risu_a. maodeling.

| Launch |

IPTy

Qt Console

A 303
PyQt GUI that supports inline figures,
proper multiline editing with syntax
highlighting, graphical calltips, and more.

|. Launch |

JupyterLab
A 3014
An extensible environment for interactive
and reproducible computing, based on the
Jupyter Motebook and Architecture.

| Launch |

j,'!
Spyder
A 425
Scientific Pvthon Development
EnviRonment. Powerful Python IDE with

advanced editing, interactive testing,
debugging and introspection Features

|. Launch |

Y

- o

_—
Jupyter
L
MNotebook
A 630
Web-based, interactive computing
notebook environment. Edit and run

human-readable docs while describing the
data analysis.

| Launch |

Glueviz

1.0.0
Multidimensional data visualization across
files. Explore relaticnships within and
among related datasets.

| Inskall |

41

)

Your first python program on jupyter

notebook

* Click on New tab, then choose Python 3

& NewTab X | O 17.Binary Division X | @ NewTab

C @ localhost:8889/tree

R Cutlook @@ Free Data Sets

" Jupyter

Files Running Clusters
Select itemns to perform actions on them.
o |~ |/

) [3 3D Object

S

(J [anaconda3

ntacts
[J O Documents
O [Downloads
[03 Favarites
[J [Links
Music

[3 OneDri

- Univ

[3 OneDri

[0 3 PycharmProjects

Games

O [Videos

L]

L]

Untitled.ipynb

L]

Untitled1.ipynb

Untitled2.ipynb

]
J

ty Of Jor

5

a

X ‘ &) Line Plot | Solalear X ‘ &) COVID Data Analy: X | 4D History

*

@ abet @ ulul o=

pecial numbe...

Document from Salah Al-Ratrout.ipynb

JUExams.com -

x | ﬁ (1) Facebook

In. =

E3 Home Page - Selec X +

Notebooks... @@ Lab06 - Polynomial...

Quit Logout

Upload

MName & :
Python 3

Text File
Folder
Terminal
an hour ago
2 months ago
2 months ago
2 months ago
8 months ago
2 days ago
2 months ago
2 months ago
2 months ago
2 months ago
& months ago 416 kB
& months ago 72B
14 days ago 1.44kB

14 days ago 1.19kB

2 monthe ano AR LR

. 84°F Haze

w1)

ENG

12:33 PM
/1472022 E’

42

* Type your code on the edit box shown, then click Run to run your
code. Each tab can be executed separately.

I Ju p}’tE‘r Untitled3 Last Checkpoint: 2 minutes age (unsaved changes) # Logout
File Edit View Insert Cell Kemel Widgets Help Trusted | Python3 O
B+ = @& B 4+ % PR B C W Code v| | =

In [1]: print{'Hello")}

Hello

In []:

43

: Ju pytE I Untitled3 Last Checkpoint: 4 minutes age (unsaved changes)

File Edit View Insert Cell Kemel Widgets

B 4+ = & DB 4 % PRin B C W Code

In [1]: |print('Hello")
Hello

In [2]: |x=5
y=7
print{x+y)

12

Help

P Logout

Trusted | # |F’ythun3 O

44

* You can use the (+) tab to add more edit boxes

: Jupyter Untitled3 Last Checkpoint: 4 minutes ago (unsaved changes) f, Logout
File Edjt View Insert Cell Kemel Widgets Help Trusted | # | Python3 O
4+ AR 4 PRun BC W Code v | &

In [1]: |print({'Hallo")
Hello

In [2]: x=5
y=7
print{x+y)

12

In [1: |

45

* To save your code click on File, save as, and choose a name for your
file, then click save

Save As

Enter a notebook path relative to notebook dir

tes] |

Cancel Save

46

* To download your code, click on File, Download as, then choose .py so
you can open your code on Pycharm, or .ipynb so you can reopen it
on jupyter notebook

i Ju pyter test Last Checkpoint: 5 minutes ago (autosaved) P
File Edit View Insert Cell Kemel Widgets Help Trusted | Python3 O
New Notebook »Run B C » B
Open...
Make a Cop
Save as..
Rename .
Save and Checkp
Revert to Checkpo
Print Prev
Download as » AsciiDoc (.asciidoc)
HTML (_html)
SR LaTeX (tex)
cl and Hal Markdown (.md)
I Notebook {.ipynb)
PDF via LaTeX (.pdf)
reST (.rst)
Python {.py)

Reveal js slides (.slides.html)

PDF via pyppeteer (_html)

* If you open the .py file on the Pycharm it will be as shown in the
figure, you can use Run to run your code as a hole file

48

* If you want to open the .ipynb file, go to juputer notebook, click on
File, the choose Open

I Ju pyter test Last Checkpoint: 11 minutes ago (autosaved)

File Edit View Insert Cell Kemel Widgets Help

Mew Motebook | pRun W C W | Code v | | &
Cpen...

Make a Copy...
Save as.

Rename...

Save and Checkpoint

Reavert to Checkpoint ¢

Print Preview

Download as 3
Trusted Notebook

Close and Halt

49

* Then click on Upload tab, choose your file from your PC, then click
upload.

~ Jjupyter

Files Running

Clusters

»elect items to parform actions on them.

L]0 | -

i/

Quit L ogout

Upload | New - &

Mame < Las| Modified File size

* Go to Running, then, click on your file. Now you can start modifying

and running each tab as before

—Jup

Files

Currently ru

yter

Funning

Clusters

nning Jupyter processes

Terminals =

There are no terminals running.

MNtebooks =

&' testipynb

Quit Logout

@

Computer Applications Lab
0907331
Lab Sheetl: Python Installation IDEs, Pycharm and Jupyter Notebook

Part 1: Write a Python program on the PyCharm IDE that prints the following information about
you (each in a separate line) using the print() function:

. Your full name

. Your university ID

. Y our major

. A motivational quote you like

Example Output (replace with your own data):

Name: Ali Ahmad

ID: 2025001
Major: Computer Engineering
Quote: "Success is no accident."

Part 2: Write a Python program on the PyCharm IDE that helps a company calculate an
employee’s bonus. The bonus is calculated as follows:

. Start with the employee’s salary.

. Add 100 Jordanian Dinars.

. Multiply the result by 3.

. Subtract the taxes, which are 70 Jordanian Dinars.

Note: The employee’s salary is 500 Jordanian Dinars.

Part 3: You are given the following code:

apples = 10

oranges = 5

total fruits = apples + oranges
apples = apples + 3

print (total fruits)

Task:
1. Copy this code into PyCharm IDE.

2. Place a breakpoint at line 4 (apples = apples + 3).
3. Using the Debug tool, follow the execution line by line.

Prepared by: Eng. Alaa Arabiyat Page 1 of 2

4. Track the values of apples, oranges, and total fruits before and after line 4.

Explain how the value of total fruits is affected by modifying apples.

6. Add anew line after line 4 to recalculate total fruits correctly based on the updated
number of apples.

7. Report the final value of total fruits.

e

Part 3: Using Jupyter Notebook

1. Open a Jupyter Notebook and create four cells. Then write a Python program that:
Declares the length and width of two rectangles in four variables.

o Calculates the area of each rectangle.

o Calculates the sum of the areas.

o Prints the areas of both rectangles and the total area.

(@)

Divide your code in four cells as follows:

In [1]: Declare the length and width of the first rectangle.
In [2]: Declare the length and width of the second rectangle.
In [3]: Calculate the area of each rectangle and the total area.
o In [4]: Print the areas of both rectangles and the total area.
2. Save and download your code as .py, then open it in PyCharm IDE to run it.
3. Download your code as .ipynb, then reopen it in Jupyter Notebook to ensure it works.

o O O

Prepared by: Eng. Alaa Arabiyat Page 2 of 2

Chapter 2
Data Types and Variables

Prepared by
Dr Mohammad Abdel-Majeed, Eng. Abeer Awad and Ayah Alramabhi
(Converted to .odp and Modified by Dr Talal A. Edwan)

Outline

* Print Statement

* Variables

* Numeric Variables
* Boolean Variables
* Strings

* User Input

Print statements

* First program using print() function
I Using ipython on a GNU/Linux shell:

Iprint("hello world")

* Variables: Used to hold a value

message = "Hello Python world!"
print (message)

Output:

Comment

* Comments in Python are indicated by pound sign (#), and anything on the line
following the pound sign is ignored by the interpreter.

* Multiline comment can be done in python by using (") before and after the
comment lines

* You can comment or uncomment multiple lines by highlighting them then press (Ctrl
+?)

Variables

* A Variable: is a named place in the memory where a programmer can store
data and later retrieve the data using the variable “name”

* You can change the contents of a variable in a later statement

* Python allows you to assign values to multiple variables in one line, and
multiple commnds in one line.

5

X =5 .
Y = 6 i
print (X) .
print (Y)
X =10 Orange

] Banana
print (X) pa
print (Y) erry
X, Yy, z = "Orange", "Banana", "Cherry"
print (x);print(y) ;print(z)

5

Variables (cont.)

Naming and Using Variables
* Case Sensitive
* Variable names can contain only letters, numbers, and underscores.

* They can start with a letter or an underscore, but not with a number.
For instance, you can call a variable message_1 but not 1_message.

* Spaces are not allowed in variable names
* underscores can be used to separate words in variable names.
* For example: greeting_message Vs greeting message

* Avoid using Python keywords and function names as variable names

* Variable names should be short but descriptive.
* name VS N
e student_name VS s_n,
* name_length Vs length_of_persons_name.

Variables (cont.)

Reserved Words

Python reserve 35 keywords:

and
assert
break
class
continue
def

del
elif
else
except
exec
finally

for
from

global

import

in

is
lambda
not
or
pass

print

raise
return
try
while

yield

Naming errors

message = “Hello\nPython\tworld!”
print (mesage)

Traceback (most recent call last):
File "main.py", line 4, in <module>
print (mesage)
NameError: name 'mesage' is not defined

Variables (cont.)

Assignment Operator
* We assign a value to a variable using the assignment statement (=)

* An assignment statement consists of an expression on the right hand side and
a variable to store the result

Variables (cont.)

Variable Types

* Variable type is based on the data stored(assigned) to the variable
X - =N <class 'str'>
print (type (X)) <class 'int'>
X - 10 <class 'float'>
print (type (X)) <class 'bool'>
X = 10.0

print (type (X))
X = True

print (type (X))

Numeric Variables

* Hold Integer or Float types
* Numeric operators are applied

* Precedence rules (Highest to lowest)
* Parenthesis
* Exponentiation (raise to a power)
* Multiplication, Division, and Remainder
* Addition and Subtraction
* Left to right

Operator

+

X

/

Xk

%

Operation
Addition

Subtraction

Multiplicatio
n

Division
Power

Remainder

Numeric Variables (cont.)

Numeric Expressions

* When you perform an operation where one operand is an integer and the
other operand is a floating point the result is a floating point

* The integer is converted to a floating point before the operation

x = 15

y = 4

y float = 4.0

print (x + vy) 19
print (x - y) 11
print (x % vy) 3
print (x * y) 60
print(x ** vy) 50625
print(x / y float) 3.75
print(x / y) 3.75
print(x // vy) 3

Numeric Variables (cont.)

Built-in Numeric Tools :

* Built-in mathematical functions
* abs(x), pow(x,y), round(x), cmp(x,y)

* Conversion Functions
* hex(num), oct(num), int(string), str(num)

* Collection Functions
* max(sequence), min(sequence)

Built-in modules:

* Python has a lot of built-in modules, you can find them on - also check the
deprecated ones:

https://docs.python.org/3/py-modindex.html

13

https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/py-modindex.html

Numeric Variables (cont.)

* math module in Python

* One of the built-in functions that contains many mathematical functions listed

in this link:
https://docs.python.org/3/library/math.html

import math
print (math.pow (5, 3))
print (math.sqgrt (45))

125.0
6.708203932499369

14

https://docs.python.org/3/library/math.html

Boolean Variables

* Store the value True or False

a = True
print (type (a))

<class 'bool'>

15

Integers and Floats as Booleans

* Zero is interpreted as False
* NonZero is interpreted as True

zero 1nt = 0
print (bool (zero int))

nonzero int = 5
print (bool (nonzero int))

zero float = 0.0
print (bool (zero float))

nonzero float = 5.0
print (bool (nonzero float))

False
True
False
True

16

Boolean Arithmetic
* Boolean arithmetic is the arithmetic of true and false logic
* Boolean Operators

* and
* or T F F T F T T
* Not
+ Equal (==) F T T F F T T
* Not Equal (!=) T T F F T F T

17

Boolean Variables (cont.)

Comparison Operators

* compare the values of 2 objects and returns True or False
* > < <= <= == I=

False

expl= 1=

print(expl)

exp2 =7 > 3

print (exp?2)

print (e xpl and exp?2)

exp3 = 3 < 1

print (expl or exp3)
(

print (not exp3)
expd= 5!= 7
print (exp4)

* Using operators with Boolean expressions

False
True
False
False
True
True

19

Bitwise Operators
* Bitwise operators are used to compare integers in their binary formats.

* When performing a binary operations between 2 integers, they are first
converted into binary numbers.

& Bitwise and

| Bitwise or

~ Bitwise not

>> Bitwise shift right

<< Bitwise shift left

A =5

B = 6
print (A & B)
print (A | B)
print (~B)
print (A >>1)
print (A <<1)

10

a=6=0110 (binary 2's comp. rep.)
~a=~0110

=-(0110 + 1)
=-(0111)
= -7 (Decimal)

* (~) returns one’s complement of the number.

— ones’ complement of 0110 is 1001

— since this is in two’s complement

representation to obtain the decimal equivalent
of this negative number, we take the two'’s

compliment:

Rule:
~n = -(n+1)

EX:
C =-3=1101 (2's comp.)
~C = 0010 but this is 2 in decimal

Or n = -3, then,
~(-3) = (-3+1) = 2

-(0110+1) =-(0111) = -7

21

Operators Precedence

operators

0, [, 15,

x.attr, x[], x[i:j], f(

+X, X, ~X
0k

* [, Y

+, -

<<, »>

&

Fas

M

<=, >=, >

r ¥
= |=

not in
not
and

or
lambda

, 1=, 15, is not, in,

descriptions

tuple, list, dictionnary, string
attribute, index, slide, function call
unary negation, bitwise invert
exponent

multiplication, division, modulo
addition, substraction

bitwise shifts

bitwise and

bitwise xor

bitwise or

comparison operators
comparison operators (continue)
comparison operators (continue)
boolean NOT

boolean AND

boolean OR

lamnda expression

High

Low

22

Strings

* String: a series of characters.
* Anything inside quotes is considered a string in Python
* You can use single or double quotes around strings
* "This is a string."
* 'Thisis also a string.'
* Use quotes and apostrophes within your strings
* 'l told my friend, "Python is my favorite language!""
* "The language 'Python' is named after Monty Python, not the snake.
* "One of Python's strengths is its diverse and supportive community.”

«

* To repeat a string n time, use print(n* str)

Ex: print(3* "hello ")
output

hello hello hello

Watch the space inside the string!

23

Strings (cont.)

Strings—escape characters

* \n: new line

* \t: tab

* \\: prints \

* You can ignore escape characters by preceding the string quotes with r
* Ex: Sample =r"This is \n a new string”

sample stringl = r"Computer Application Lab \

n 0909331" | |

sample string2= "Computer Application Lab \n Computer Application Lab \n 0909331
ERl Computer Application Lab

0909331 Lot

print (sample stringl)

print (sample string2)

24

Strings (cont.)

Strings Methods

* A method is an action that Python can perform on a piece of data

e title() method

* The dot (.) after name in name.title() tells Python to make the title() method act on the variable name.

lab name = "computer application lab"
print (lab name)
print (lab name.title())

computer application lab
Computer Application Lab

* How to print on the same line?

25

Strings Methods

* upper() method, Variable_name.upper()
* lower() method, Variable_name.lower()
Methods do not affect the original string

lab name = "computer application lab"
print (lab name)

print (lab name.title())

print (lab name.upper())
print (lab name)

print (lab name.lower())

computer
Computer
COMPUTER
computer
computer

application
Application
APPLICATION
application
application

lab
Lab
LAB
lab
lab

String in Python have a lot of methods , refer to this link to see them

https://www.w3schools.com/python/python ref string.asp

26

https://www.w3schools.com/python/python_ref_string.asp

Strings (cont.)

* islower() method checks if the string is in lower case
* isupper() method checks if the string is in upper case

* isalnum() method returns True if all the characters are alphanumeric, meaning
alphabet letter (a-z) and numbers (0-9).

replace() method replaces a specified phrase with another specified phrase,
string.replace(oldvalue, newvalue,count), count is optional, it decides how many

oldvalues do you want to replace

computer 1

sample = " Computer 1"

print (sample.lower ()) COMPUTER 1

print (sample.upper ()) False

print (sample.islower () False
False

(
' (')
prlntgsample.lsupper();) _Computer 1
(]

print (sample.isalnum (
print (sample.replace (' ', " "))

String: in, not in, stratswith, endswith, len

* Check if a certain string appears inside another string
* Ex: ‘Welcome’ in ‘Welcome to the computer applications lab’
* Ex: sentence = ‘Welcome to the computer applications lab’
‘Welcome’ in sentence

* Check if certain string starts or ends with a certain string

* Ex: sentence = ‘Welcome to the computer applications lab’
sentence.startswith(‘Welcome’)
sentence.endswith(‘Lab’)

* len(string) is used to find the length of the string

sample = "Computer Application Lab" False
print ("computer" in sample) True
print ("Computer" in sample) True
print (sample.startswith ("Computer")) True
print (sample.startswith ("Com")) True
print (sample.endswith ("Lab")) 24

(

print (len (sample))

Strings (cont.)

Concatenating Strings
* Python uses the plus symbol (+) to combine strings
* Combining strings is called concatenation

lab name = "computer applications lab"
lab no = "0907311"
lab info = lab name + " " +lab no

Print (lab info.title())

Computer Application Lab 0907311

29

Strings (cont.)

Strings—split() and join()

* split(): splits a string using specified delimiter

* Returns a list

* join(): takes a list of strings and join them

lab name = "computer applications lab"
print (lab name.split())
print (lab name.split('a'))

lab name=['computer', 'application',
"lab']

space=" "

print (space.join(lab name))

coma=","
print (coma.join (lab name))

['computer', 'application', 'lab']

['computer ', 'pplic', 'tion 1°',
computer application lab
computer, application, lab

'b']

30

String indexing

* In Python, we can also index backward, from the end—positive indexes count
from the left, and negative indexes count back from the right

* Indexing is done using square brackets

S = "Computer"

Computer
Computer
C

r
omputer
ter
Comput
Com
puter

31

Strings (cont.)

Strings Immutability
* Strings do not support item assignment

Traceback (most recent call last):
S = "Computer" File "main.py", line 2, in <module>
S[0] = "A" S[0] = "A"

TypeError: 'str' object does not support item assignment

32

Strings (cont.)

Stripping Whitespace
* strip()
* Istrip()
* rstrip()

lab name = " computer application lab "
print (lab name)

print (lab name.lstrip())

print (lab name.rstrip())

print (lab name.strip())

computer application lab
computer application lab
computer application lab
computer application lab

33

Strings (cont.)

Type Conversion

* str(): Covert a variable to string

* int(): Covert a variable to integer

* float(): Covert a variable to float

lab name = " computer application lab "
x = 20
print (" The number of students in the" + lab name + "is

"+ X)

Traceback (most recent call last):
File "main.py", line 3, in <module>
print(* The number of students in the" + lab_name
+ "is "+ Xx)
TypeError: can only concatenate str (not "int") to str

34

Strings (cont.)

lab name = " computer application lab "
x = 20
print (" The number of students in the" + lab name + "is " + str(x)

The number of students in the computer application lab is 20

)

35

User Input

* input() function is used to get the user input

* The input() function pauses your program and waits for the user to
enter some text.

* Once Python receives the user’s input, it stores it in a variable to
make it convenient for you to work with

message = input ("Enter your first name: ") Enter your first name: Mohammed
print (message) Mohammed

User Input (cont.)

message = "Welcome to the Computer Application Lab"
message += " \nPlease Enter Your First Name: "
first name= input (message)

print ("Hello " + first name)

Welcome to the Computer Application Lab
Please Enter Your First Name: Mohammed
Hello Mohammed

37

User Input (cont.)

Accept Numerical Input

* When you use the input() function, Python interprets everything the user enters
as a string.

input ("Enter a Number: ")
X +5

Enter a Number: 5
Traceback (most recent call last):
File "main.py", line 2, in <module>
X=X+5
TypeError: can only concatenate str (not "int") to str

User Input (cont.)

X = input ("Enter a Number:
X = 1int (X) +5
print ("X + 5 =" + X)

FEnter a Number: 5

Traceback (most recent call last):
File "main.py", line 3, in <module>

print ("X + 5 = " + X)

TypeError: can only concatenate str

1A int ")

to str

39

User Input (cont.)

X = input ("Enter a Number:
X = int (X) +5
print ("X + 5 =" + str(X))

FEnter a Number: 6
X + 5 =11

")

40

Computer Applications Lab
0907331
Lab Sheet2: Data Types and Variables

Part 1: Write a Python program that asks the user to enter values for x, y, and z. Then, calculate
and print the value of C using the given formula, making sure to carefully follow Python's
operator precedence rules.

z—z)— (2z+3y)°? :
c =Wt - @243y, e

r+y

Example Input:

° X =
¢ Vv
° 7 =

Expected Output:

C =-26.30958424017657

Part 2: Write a Python program to generate a password using the user's full name and favorite
quote, applying some string methods.

Tasks:

1. Prompt the user to enter their full name and favorite quote.
2. Ask the user to convert all letters in the quote to lowercase before processing.
3. Construct the password following these rules:

@)

Take the first 3 letters of the first name in lowercase. Before appending, check
with is1ower () to ensure they are lowercase.
Take the last 2 letters of the last name in uppercase. Before appending, check with
isupper ().
In the favorite quote:

= Replace the first letter of the quote wherever it appears in the quote with

X" using .replace (first letter, "X", 2).

= Then take the first and last letters of the modified quote in uppercase.
Append the length of the favorite quote at the end.
Use in to check if the quote contains any digits.
Use startswith () to check if the first name starts with a vowel.

Prepared by: Eng. Alaa Arabiyat Page 10f3

4.
5.

o Use isalnum() to ensure the generated password contains only alphanumeric
characters.
Print the generated password with a descriptive message.
Print messages indicating:
o Whether the favorite quote contains digits.
o Whether the first name starts with a vowel.
o Whether the password is alphanumeric

Example Input:

Full Name: Hamzeh Rami
Favorite Quote: Success comes to those who persist

Expected Output:

Generated Password: hamMIXt34
Favorite quote contains digits: False
First name starts with a vowel: False
Password is alphanumeric: True

Part 3: Write a Python program to manage a user's monthly salary and expenses as follows:

1.

w

o

7.

Prompt the user to enter their monthly salary and expenses (rent, grocery, utilities) in one
line, separated by commas. Use the strip () method to remove any extra spaces at the
beginning or end of the input.
Split the input string into separate values.
Convert all values to integers using int ().
Calculate the following:
o Total expenses
o Remaining balance = salary — total expenses
o Apply a 5% bonus to the remaining balance
Use abs () to ensure the remaining balance is not negative.
Print all results rounded to 2 decimal places, including:
o Salary
o Total Expenses
o Remaining Balance
o Final Balance with Bonus
At the end, join all outputs into a single summary string separated by | and print it.

Example Input:

Enter salary and expenses (salary,rent,grocery,utilities): 2500,1200,500,300

Expected Output:

Salary: 2500.00

Prepared by: Eng. Alaa Arabiyat Page 2 of 3

Total Expenses: 2000.00
Remaining Balance: 500.00
Final Balance with Bonus: 525.00

Summary: Salary: 2500.00 | Total Expenses: 2000.00 | Remaining Balance:

500.00 | Final Balance with Bonus: 525.00

Part 4: Managing User Permissions with Bitwise Operators.
A system stores user permissions using bits in a single integer:
e Bit 0 — Read permission
e Bit1 — Write permission
e Bit 2 — Execute permission

e Bit 3 — Admin permission

Tasks:

=

2. Using bitwise operators, perform the following operations:
o Grant Write permission without affecting other permissions.

o Revoke Execute permission without affecting other permissions.

o Toggle the Admin permission.
o Check whether the user has Read permission.
3. Print the updated permission in both binary and decimal formats.
Example Input:
Enter current permissions (0-15): 5
(Binary 0101 — Read=ON, Write=OFF, Execute=ON, Admin=0OFF)
Expected Output:

Updated Permissions (binary): 1011
Updated Permissions (decimal): 11
Read permission is ON

Prepared by: Eng. Alaa Arabiyat

Ask the user to enter the current permission value (an integer between 0 and 15).

Page 3 of 3

Lists, Tuples,

Dictionaries and Set
(Chapter 4)

Prepared by
Dr Mohammad Abdel-Majeed, Eng. Abeer Awad and Ayah Alramahi
(Converted to .odp and Modified by Dr Talal A. Edwan)

Outline

* List in Python
* Tuples

* Dictionaries
* Set

List in Python

* A listis a collection of items in a particular order
* Numbers, letters, strings etc.
* mutable

* Defined using square brackets []

bicycles =["'trek', 'cannondale', 'redline', 'specilalized']
print (bicycles)

['trek', 'cannondale', 'redline', 'specialized']

List in Python

* List can have elements with different types

Mixed List = , O,
print (type (Mixed List[O]
print (type (Mixed List[1]
print (type (Mixed List[Z]
print (type (Mixed List[3]

["treck' True, 'A']
)
)
)
)

)
)
)
)

<class 'str'>
<class 'int'>
<class 'bool'>
<class 'str'>

Accessing elements in the list
* Index Positions Start at O, Not 1

* By asking for the item at index -1, Python always returns the last item
in the list:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']

print (bicycles[-1])

Modifying Elements in a List

* To change an element, use the name of the list followed by the index of the
element you want to change, and then provide the new value you want that item
to have.

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

bicycles[0] = "BMX"
print (bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['"BMX', 'cannondale', 'redline', 'specialized']

Adding Elements to a List- append()

* Add element after the last element in the list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

bicycles.append ("BMX")
print (bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'redline', 'specialized', 'BMX']

Adding Elements to a List- insert()

* The element will be inserted before the item located at the specified index.
bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

bicycles.insert (2, "BMX")
print (bicycles)

bicycles.insert (-1, "Honda")
print (bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'BMX', 'redline', 'specialized']
['trek', 'cannondale', 'BMX', 'redline', 'Honda', 'specialized']

Removing Elements from a List

* You can remove an item according to its position in the list or according to its
value

* del statement can be used to remove an element from the list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

del bicycles|[1]
print (bicycles)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'redline', 'specilialized']

10

* pop() method removes and return the last element in the list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

element = bicycles.pop ()
print (bicycles)

print (element)

['trek', 'cannondale', 'redline', 'specialized']
['trek', 'cannondale', 'redline']
specialized

11

* pop(index) method removes and return the the element at the given index

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

element = bicycles.pop(2)
print (bicycles)
print (element)

['trek', 'cannondale', 'redline', 'specilalized']
['trek', 'cannondale', 'specilalized']
redline

12

Removing Elements from a List by Value
* remove(Value) method can be used to remove an element from a list

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

bicycles.remove ("cannondale")

print (bicycles)

13

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print (bicycles)

bicycles.remove ("trek")
print (bicycles)

14

* The remove() method deletes only the first occurrence of the value you
specify

bicycles = ['trek', 'cannondale', ‘trek', 'specilalized']
print (bicycles)

= "trek"
bicycles.remove (A)
print (bicycles)

['trek', 'cannondale', 'trek', 'specilalized']
['cannondale', 'trek', 'specialized']

15

Copying a List

* You cannot copy a list simply by typing list2 = list1, because: list2 will only be a
reference to list1, and changes made in list2 will automatically also be made in

list1.

Listl = ['trek', 'cannondale', 'bmx', 'specialized']
List?2 = Listl
List2[0] = "bmx'

print (List2)
print (Listl)

['bmx', 'cannondale', 'bmx', 'specialized']
['bmx', 'cannondale', 'bmx', 'specialized']

* There are ways to make a copy, one way is to use the built-in List method copy().

Listl = ['trek', 'cannondale', 'bmx', 'specialized']
ListZ2 = Listl.copy ()

List2[0] = "bmx'

print (List?2)

print (Listl)

['"bmx', 'cannondale', 'bmx', 'specialized']
['trek', 'cannondale', 'bmx', 'specialized']

17

* Another way is to use [:].

Listl = ['trek', 'cannondale', 'bmx', 'specialized']
List?2 = Listl][:]

List2[0] = "bmx'

print (List?2)

print (Listl)

['bmx', 'cannondale', 'bmx', 'specialized']
['trek', 'cannondale', 'bmx', 'specialized']

18

Organizing a List-Sorting
* sort() method

* Permanent sort
 sort(reverse = True)

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print (bicycles)

bicycles.sort ()
print (bicycles)

['trek', 'cannondale', 'bmx', 'specialized']
['bmx', 'cannondale', 'specialized', 'trek']

19

* Sort is applied to the same type of data

bicycles = ['trek', 'cannondale', 2, 'specialized']
print (bicycles)

bicycles.sort ()

print (bicycles)

['trek', 'cannondale', 2, 'specialized']
Traceback (most recent call last):
File "main.py", line 4, 1n <module>
bicycles.sort ()
TypeError: '<' not supported between instances of 'int' and
'str'

20

* sorted() function, not Permanent, it returns a sorted copy of the list

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print (bicycles)

s bicycles = sorted(bicycles)
print (bicycles)
print (s bicycles)

['trek', 'cannondale', 'bmx', 'specialized']
['trek', 'cannondale', 'bmx', 'specialized']
['bmx', 'cannondale', 'specialized', 'trek']

21

Printing the list in the reversed order

* reverse() method

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']
print (bicycles)

s bicycles = bicycles.reverse ()
print (bicycles)
print (s bicycles)

['trek', 'cannondale', 'bmx', 'specialized']
['specialized', 'bmx', 'cannondale', 'trek']
None

22

Length of a List

* Len() function returns the length of the list.

bicycles = ['trek', 'cannondale', 'bmx', 'specialilized']
print (bicycles)

print (len (bicycles))

23

Unpack a collection

* If you have a collection of values in a list, tuple etc. Python allows you to extract
the values into variables. This is called unpacking.

fruits ["apple", "banana", "cherry"]
X, Yy fruits

print (x)

print (y)

print (z)

The list() Constructor

* Itis also possible to use the list() constructor when creating a new list.

mylist = list (("apple", "banana", "cherry")) # note the double round-brackets
print (mylist)

['apple', 'banana', 'cherry']

25

Operation
L*3

for x in L: print(x)
in L

.append(4)
.extend([5,6,7])
.insert(i, X)
.index(X)

.count(X)

.sort()

.reverse()

-copy()
.clear()

.pop(i)

=/ = - - - - - - — & \w

.remove(X)

del L[i]

del L[i:5]

L[i:3] = []

L[i] = 3

L[i:3] = [4,5,6]

L = [x**2 for x in range(S)]

list(map(ord, "spam'))

Interpretation

Iteration, membership

Methods: growing

Methods: searching

Methods: sorting, reversing,

copying (3.3+), clearing (3.3+)

Methods, statements: shrinking

Index assignment, slice assignment

List comprehensions and maps (Chapter 4, Chapter 14, Chapter 20)

26

Looping through the list

* for loop: pull an item from the bicycles list and place it in the variable bicycle
* Indentation is important

* We will cover looping and control structures later

bicycles = ['trek', 'cannondale', 'bmx', 'specialized']

for bicycle 1n bicycles:

\ Jprint (bicycle)

Indentation trek

cannondale
bmx

specialized

27

range() function
* range() function makes it easy to generate a series of numbers.
* You can convert the results of range() directly into a list using the list() function

brint (list (range(3,12)) ‘ \[3, 456, 7,8 9 10, 11]

* The step between the numbers in the list can be changed

* By default the step is 1
* range(start, end, step)

[3,5,7,9, 11]

print(list(range(3,12,2))‘ ‘

28

* To print the numbers from 1 to 4 on different lines, you would use
range(1,5) with a for loop

for value in range(1l,5):
print (value)

A WN -

29

Statistics with list of numbers

digits = [1,2,3,4,5,6,7,8,9,0]
print (min (digits))

print (max (digits))

print (sum(digits))

30

List Comprehensions
* Offers a shorter syntax when you want to create a new list based on the values of an existing list
* You can do all that with only one line of code

newlist = [expression for item in iterable if condition == True]

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

newlist = [x for x in fruits i1f "a" in x]
print (newlist)

['apple', 'banana', 'mango']

31

* The condition is optional and can be omitted

newlist = [x for x 1n fruits]
print (newlist)

['apple', 'banana', 'cherry', 'kiwi', 'mango']

squares = [value**2 for value 1in range(l,11)]
print (squares)

(1, 4, 9, 1leo, 25, 306, 49, 04, 81, 100]

32

Slicing a list

* To make a slice, you specify the index of the first and last elements you want to

work with
* List[first:last] Last not included
* fist is empty — from the beginning
* Lastis empty . till the end of the list

players = ['charles', 'martina', 'michel', 'florence',
print (players[0:3])

print (players[0:])

print (players[:3])

print (players[:])

print (players[-3:

1)

'el1l

"]

['charles', 'martina’, 'michel']

['charles', 'martina', 'michel’, 'florence’, 'eli']
['charles', 'martina’, 'michel']

['charles', 'martina', 'michel’, 'florence’, 'eli']
['michel', 'florence’, 'eli']

33

Looping Through a Slice

players

['charles',

'martina',

'"michel',

'"florence',

print ('Here are the first three players on my team: ')
for player in players[:3]:
print (player.title())

Here are the first three players on my team:

Charles
Martina
Michel

'eli']

34

Multi-Dimensional Lists

* Multi-dimensional lists are the lists within lists.

a = 4, o6, 8, 101, [3, 6, 9, 12,
for record in a:
print (record)

a = [[2/ 4/ 6/
for record in a:
print (record)

35

Tuples

* Tuple is an immutable list, defined by using () brackets.
* |t can be accessed using list indexing

dimensions = (200, 50) 200
print (dimensions[0]) 50
print (dimensions[1])

* Since tuples are indexed, they can have items with the same valueTuple items

* Tuple can be of any data type (int, str, Boolean, ...)

tuplel = ("apple", "banana", "cherry")
tuple2 = (1, 5, 7, 9, 3)

tuple3 = (True, False, False)

tuplel = ("abc", 34, True, 40, "male")

* Its values cannot be changed

dimensions = (200, 50)
dimensions[0] = 30

Traceback (most recent call last):
File "main.py", line 2, in <module>
dimensions[0] = 30
TypeError: 'tuple’ object does not support item assignment

37

Looping Through All Values in a Tuple

* Similar to the lists

dimensions = (200,50)

for dimension 1in dimensions:
print (dimension)

200
50

38

dimensions = (200,50)
print (dimensions)

dimensions = (400,500)
print (dimensions)

(200, 50)
(400, 500)

39

Create Tuple With One Item

* To create a tuple with only one item, you have to add a comma after the item,
otherwise Python will not recognize it as a tuple.

a tuple
tlist = ("apple",)
print (type(tlist))

#NOT a tuple
tlist = ("apple")
print (type(tlist))

<class 'tuple'>
<class 'str'>

Unpacking a Tuple

* When we create a tuple, we normally assign values to it. This is called "packing" a
tuple, we are also allowed to extract the values back into variables. This is called
"unpacking"

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print (green)
print (yellow)
print (red)

apple
banana
cherry

41

Using Asterisk™

* If the number of variables is less than the number of values, you can add an * to
the variable name and the values will be assigned to the variable as a list

fruits = ("apple", "banana", '"cherry", 'strawberry', " raspberry ")
(green, yellow, *red) = fruits
print (green)

print (yellow)
print (red)

apple
banana
['cherry', 'strawberry', 'raspberry']

42

Join Two Tuples

* To join two or more tuples you can use the + operator

tuplel =
tuple2 =

tuple3 = tuplel + tuple?
print (tuple3)

43

Tuple Methods

* Python has two built-in methods that you can use on tuples count(), index()

thistuple = (1, 3, 7, thistuple = (1, 3, 7,

x = thistuple.count (5) x = thistuple.index (8)

print (x) print (x)

Dictionaries

* A dictionary in Python is a collection of key-value pairs

* You can use a key to access the value associated with that key

* A key’s value can be a number, a string, a list, or even another dictionary
* A dictionary is wrapped in braces, {}

* Every key is connected to its value by a colon

* Individual key-value pairs are separated by commmas

student = {'name’': '‘Mohammad', 'Gender': 'M', 'Age': '22'}

Dictionaries

* storing different kinds of information about one object

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': '22'}

* You can also use a dictionary to store one kind of information about
many objects

Age = {'Mohammad': 22, 'Ahmad": 40, 'Ayman'; 30}

46

Accessing Values in a Dictionary

* To get the value associated with a key, give the name of the dictionary and then
place the key inside a set of square brackets

student = {'name': 'Mohammad', 'Gender': 'M',

"Age': '22'} Mohammad
print (student['name'])

* There is also a method called get() that will give you the same result

student = {'name': 'Mohammad', 'Gender': 'M', 'Age':

122"} Mohammad
print (student.get ('name'))

Adding New Key-Value Pair

* Would give the name of the dictionary followed by the new key in square
brackets along with the new value.

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': '22'}
print (student['Age'])

student['city'] = 'Amman'
print (student)

48

student ={}
print (student)

student ['Age'] = 22

student|['name'] = "Mohammad'
student['Gender'] = 'M'
student['city'] = 'Amman'
print (student)

'‘Age': 22, 'name': 'Mohammad', 'Gender': '‘M', 'city': '"Amman'}

49

Modifying Values in a Dictionary

* give the name of the dictionary with the key in square brackets and then the new
value you want associated with that key.

student = {'name': 'Mohammad', 'Gender': 'M', 'Age':
print (student)

student ['Age']

print (student)

50

Removing Key-Value Pairs
* Use the del statement to completely remove a key-value pair.
* All del needs is the name of the dictionary and the key that you want to remove.

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print (student)

del student|['Gender']
print (student)

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
{'name': 'Mohammad', 'Age': 22}

Removing Key-Value Pairs—pop()
* Use pop() method to remove key from a dictionary.

* pop() returns the value of the corresponding key()

my dict = {'Cl': 30, 'C2':25, 'C3':33}

my dict.pop('Cl")
print (my dict)

{'C2': 25, 'C3': 33}

52

Get keys, and values

* The keys() method will return a list of all the keys in the dictionary
* The values() method will return a list of all the values in the dictionary

* The items() method will return each item in a dictionary, as tuples in a list

my dict = {'Cl': 30, 'C2':25, 'C3':33}

K = my dict.keys ()
print (K)

V = my dict.values ()
print (V)

I = my dict.items ()
print (I)

dict keys(['Cl', 'C2', 'C3'])
dict values ([30, 25, 33])
dict items([('C1l', 30), ('C2', 25), ('C3', 33)1])

Looping Through a Dictionary- Key-Value Pairs

student = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
print (student)

for key,value in student.items|() :
print ('the key is: ' + key +" and 1ts value is: "+ str(value))

{'name': 'Mohammad’, 'Gender': '‘M', 'Age":
22}

the key is: name and its value is: Mohammad
the key is: Gender and its value is: M

the key is: Age and its value is: 22

54

Looping Through a Dictionary- Keys

student = {'name': 'Mohammad', 'Gender': 'M', 'Age':
print (student)

for key 1n student.keys /() :
print ('the key 1s: ' + key)

{"name': 'Mohammad', 'Gender': 'M', 'Age':
the key 1s: name

the key 1s: Gender

the key 1s: Age

55

Looping Through a Dictionary- Sorted Keys

student = {'name': 'Mohammad', 'Gender':

print (student)

for key 1in sorted(student.keys()) :
print ('the key 1s: ' + key)

{"name': 'Mohammad', 'Gender':

the key 1s: Age
the key 1s: Gender
the key 1s: name

'M' ,

'M' ,

'Age':

'"Age':

56

Looping Through a Dictionary- Values

student = {'name': 'Mohammad', 'Gender':
print (student)

for value 1n student.values():
print ('the value 1is: ' + str(value)

{ "name': '"Mohammad', 'Gender':
the value 1s: Mohammad

the value 1s: M

the value 1s: 22

57

List of Dictionaries

student 1 = {'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
student 2 {'name': 'Ahmad', 'Gender': 'M', 'Age': 25}
student 3 = {'name': 'Lina', 'Gender': 'F', 'Age': 18}
students = [student 1, student 2, student 3]

for student in students:
print (student)

print (students[0] ['name'])

{'name': 'Mohammad', 'Gender': 'M', 'Age': 22}
{'name': 'Ahmad', 'Gender': 'M', 'Age': 25}
{'name': 'Lina', 'Gender': 'F', 'Age': 18}
Mohammad

List in a Dictionary

plzza = |
'crust': 'thick',
'"toppings':['mushrooms', 'extra cheese']}

print ('You ordered a

following toppings')

for topping in pizzal'toppings']:
print ("\t" + topping)

'+ pizza['crust']+ '—-crust pizza '+ 'with the

You ordered a thick-crust pizza with the followling toppings
mushrooms

extra cheese

59

favorite language = {
'"Jen':['python', 'ruby'],
'sara': ['c'],
'edward':['ruby','go'],
}
for name, languages in favorite language.items () :
print ("\n" 4+ name.title() + "'s favorite language are:")
for language 1n languages:
print ("\t" + language.title())

Jen's favorite language are:
Python
Ruby

Sara's favorite language are:
C

Edward's favorite language are:
Ruby
Go

Dictionary in a Dictionary

users = {

'aeinstein': { Username: aeinstein
'first': 'albert', Full name: Albert Einstein
'"last': 'einstein', Location: Princeton
'"location': 'princeton',

o, Username: mcurie

'mcurie’ :{ Full name: Marie Curie
'first': 'marie', Location: Paris
'last': 'curie',

'"location': 'paris',

s

}

for username, user info in users.items() :
print ("\nUsername: " + username)
full name = user info['first']+ " "
+user info['last']
location = user info['location']

print ("\tFull name: "+ full name.title())
print ("\tLocation: " + location.title())

Concatenate Dictionaries--Update

* The update() method updates the dictionary with the elements from the another

dictionary object or from an iterable of key/value pairs.

d = {1: "one", 2: "three"}
dl = {2: "two"}

#update the value of key 2
d.update (dl)
print (d)

dl={3: "three"}

adds element with key 3
d.update (dl)

print (d)

d= {'x':2}
d.update(y = 3, z = 0)
print (d)

{1:
{1:

{'XV:

one',

'one',

2,

'y :

-NN

: 'two'}
: 'two',
3, 'z':

3:

0}

'"three'}

62

Set

* Sets are used to store multiple items in a single variable.

* Asetis a collection which is unordered, unchangeable*, and unindexed.
*Note: Set items are unchangeable, but you can remove items and add new items.

* Sets are written with curly brackets {}.
* sets are defined as objects with the data type 'set’
* Sets are unordered, so you cannot be sure in which order the items will appear.

setl = {"apple", "banana", "cherry"}
print(setl)

{'apple’, 'cherry’, 'banana'}

* Sets cannot have two items with the same value.

setl = {"apple", "banana", "cherry", "apple"} ‘
print(setl)

| {'apple’, 'cherry', 'banana'} |

* To determine how many items a set has, use the len() function

* Set items can be of any data type, and can contain different data types

setl = {"apple", "banana", "cherry"}
set2 = {1,5,7,9, 3}

set3 = {True, False, False}

setl = {"abc", 34, True, 40, "male"}

64

The set() Constructor

* Using the set() constructor to make a set

setl = set(("apple", "banana", "cherry")) # note the double round-

brackets
print(setl)

{'apple’, 'cherry', 'banana'}

65

Access ltems
* You cannot access items in a set by referring to an index or a key.

* You can loop through the set items using a for loop, or ask if a specified value is
present in a set, by using the in keyword.

setl = {"apple”, "banana”, setl = {"apple", "banana", "cherry"}

"cherry"} print("banana" in setl)
for x in setl:

print(x)

cherry
apple True
banana

Change, and add Items

* Once a set is created, you cannot change its items, but you can add new items.

e To add one item to a set use the add() method.

setl = {"apple", "banana", "cherry"}
setl.add("orange")
print(setl)

‘{'orange', ‘apple’, 'cherry’, 'banana'} ‘

* To add items from another set into the current set, use the update() method

setl = {"apple", "banana", "cherry"}
tropical = {"pineapple", "mango",
Ilpapayall}

setl.update(tropical)

print(setl)

{'apple’, 'mango’, 'cherry', '‘pineapple’, 'banana’, 'papaya'} ‘

67

* The object in the update() method does not have to be a set, it can be any
iterable object (tuples, lists, dictionaries etc.).

setl = {"apple", "banana", "cherry"}
mylist = ["kiwi", "orange"]
setl.update(mylist)

print(setl)

{'banana’, 'cherry’, ‘apple', '‘orange’, 'kiwi'}

68

Remove ltem

* To remove an item in a set, use the remove(), or the discard() method.
* If the item to remove does not exist, remove() will raise an error.

* If the item to remove does not exist, discard() will NOT raise an error.

setl = {"apple", "banana", "cherry"} setl = {"apple", "banana", "cherry"}
setl.remove("banana") setl.discard("banana")
print(setl) print(setl)

| {'apple’, ‘cherry'} | | {'apple’, ‘cherry'} |

* To remove the last item use the pop() method. Sets are unordered, so when using the pop()
method, you do not know which item that gets removed.

* The clear() method empties the set.

* The del keyword will delete the set completely

setl = {"apple", "banana", "cherry"}
del setl

print(setl)

Traceback (most recent call last):
File "demo _set del.py", line 5, in <module>

print(thisset) #this will raise an error because the set no longer
exists

NameError: name 'thisset' is not defined

70

Join Two Sets

* You can use the union() method that returns a new set containing all items from
both sets, or the update() method that inserts all the items from one set into
another

Setl —_ {Ilall’ Ilbll) IICII}
set2 = {1, 2, 3}

set3 = setl.union(set2?)
print(set3)

{3, 1,'c",'a', 'b", 2} |

* The update() method mentioned before.

Method
add()
clear()
copy()
difference()

difference update()

discard()
intersection()

intersection update()

Isdisjoint()
issubset()
Issuperset()

pop()

remove()

symmetric difference()

symmetric difference update()

union()

update()

Description

Adds an element to the set

Removes all the elements from the set

Returns a copy of the set

Returns a set containing the difference between two or more sets
Removes the items in this set that are also included in another, specified set
Remove the specified item

Returns a set, that is the intersection of two other sets

Removes the items in this set that are not present in other, specified set(s)
Returns whether two sets have a intersection or not

Returns whether ancther set contains this set or not

Returns whether this set contains another set or not

Removes an element from the set

Removes the specified element

Returns a set with the symmetric differences of two sets

inserts the symmetric differences from this set and another

Return a set containing the union of sets

Update the set with the union of this set and others

72

Computer Applications Lab
0907331
Lab Sheet 3: Lists, Tuples, and Dictionaries

Part 1: You are working at an electric car dealership, and you need to write a Python program to

help organize and analyze the cars available in the showroom.
Your task is to use lists to store, modify, sort, and analyze car data.

Tasks:

1. Create a list named cars containing the following car models:
["Tesla", "BYD", "BMW", "Kia", "Hyundai", "Nissan"]

Expected Output:
['Tesla', 'BYD', 'BMW', 'Kia', 'Hyundai', 'Nissan']

2. Print the total number of available cars.

Expected Output:

Total cars: 6
3. Add two new car models: "Toyota" and "Lucid".

Expected Output:
['Tesla', 'Lucid', 'BYD', 'BMW', 'Kia', 'Hyundai', 'Nissan', 'Toyota']

4. Replace "Bvw" with "rRivian" (the dealership decided to focus on electric models only).

Expected Output:
['Tesla', 'Lucid', 'BYD', 'Rivian', 'Kia', 'Hyundai', 'Nissan',
'Toyota']

5. Remove "Kia" from the list.

Expected Output:

['Tesla', 'Lucid', 'BYD', 'Rivian', 'Hyundai', 'Nissan', 'Toyota']

6. Sort the list temporarily and display both the sorted list and the original one.

Expected Output:

Sorted list: ['BYD', 'Hyundai', 'Lucid', 'Nissan', 'Rivian', 'Tesla',
'Toyota']

Original 1list (unchanged): ['Tesla', 'Lucid', 'BYD', 'Rivian',

'Hyundai', 'Nissan', 'Toyota']

Prepared by: Eng. Alaa Arabiyat Page 1 of 7

7. Reverse the order of the original list and print it.

Expected Output:

['Toyota', 'Nissan', 'Hyundai', 'Rivian', 'BYD', 'Lucid', 'Tesla']

8. Copy the list to backup_cars.
Then, modify the first element in the original list to "Polestar™ and print both lists.

Expected Output:

Original list: ['Polestar', 'Nissan', 'Hyundai', 'Rivian', 'BYD',
'Lucid', 'Tesla']

Backup list: ['Toyota', 'Nissan', 'Hyundai', 'Rivian', 'BYD', 'Lucid',
'Tesla']

9. Use slicing to:
o Print the first three car models.
o Print the last two models.
o Print every second car.

Expected Output:

First three: ['Polestar', 'Nissan', 'Hyundai']

Last two: ['Lucid', 'Tesla']

Every second: ['Polestar', 'Hyundai', 'BYD', 'Tesla']

10. Use a for loop to print each car model preceded by "available model:".

Expected Output:

Available model: Polestar
Available model: Nissan
Available model: Hyundai
Available model: Rivian
Available model: BYD
Available model: Lucid
Available model: Tesla

11. Create a list of car prices (in USD) corresponding to some models:
[55000, 48000, 72000, 60000, 45000]

Expected Output:
[55000, 48000, 72000, 60000, 45000]

12. Print the following statistics using built-in functions:
The cheapest car price.

The most expensive car price.

The total value of all cars.

The average price.

(@)

(@)

e}

Prepared by: Eng. Alaa Arabiyat Page 2 of 7

13.

Expected Output:

Cheapest price: 45000

Most expensive price: 72000
Total value: 280000

Average price: 56000.0

Use a loop to print each price and a message:
o "Luxury" if price > 70000
o "Mid-range" if price between 50000 and 69999
o "Economy" if price < 50000

Expected Output:

55000 — Mid-range
48000 Economy
72000 Luxury
60000 —» Mid-range
45000 — Economy

Part 2: You are developing a small smart home design system. Each room in the house has fixed
dimensions, materials, and furniture, so you decide to use tuples to ensure this data cannot be
accidentally changed.

Write a Python program that performs the following operations using tuples.

Tasks:

Define a tuple named 1iving room that contains the following data in order:
"Living Room", width 6, height 4, flooring material "wood", and furniture ("sofa",
"table", "lamp").

Then, print the room name and the last furniture item only.

Expected Output:

Room: Living Room
Last furniture: lamp

The house has three rooms stored in a tuple of tuples called rooms:

rooms = (
("Bedroom", 5, 3, "carpet"),
("Kitchen", 4, 3, "tile"),
("Living Room", 6, 4, "wood")

Use a for loop to print each room name and its flooring type in the format:
"Bedroom — carpet", "Kitchen - tile", etc.

Expected Output:

Prepared by: Eng. Alaa Arabiyat Page 3 of 7

Bedroom — carpet
Kitchen - tile
Living Room — wood

3. From the following tuple, print only the color "gray" without changing anything in the

tuple:

design = ("wall colors", ("white", "gray", "blue"))
Expected Output:

gray

4. Given the tuple below, unpack it so that:
o lengthgets5
o widthgets?7
o others stores the rest of the values
Then print them all.

dimensions = (5, 7, 8, 10, 12)

Expected Output:

length: 5
width: 7
others: (8, 10, 12)

5. You realize the original kitchen dimensions were wrong.
Try to modify the tuple directly (to change width = 5), then handle the resulting error by
creating a new tuple updated kitchen with the corrected values.
Expected Output:

TypeError: 'tuple' object does not support item assignment
Updated kitchen: ('Kitchen', 5, 3, 'tile')

Part 3: You are developing a car inventory management system for an electric vehicle
dealership. Each car has multiple details like brand, model, price, and features.
You will use dictionaries (and sometimes lists) to store, update, and analyze this data efficiently.

Tasks:

1. Create a dictionary named car that contains the following key-value pairs:
o "brand" — "Tesla"
o "model" — "Model Y"
o "price" — 55000
)

"features" — list containing ["autopilot", "long range", "panoramic
roof"]

Prepared by: Eng. Alaa Arabiyat Page 4 of 7

Then, print only the model name and the last feature without directly typing their values.
Expected Output:

Model: Model Y
Last feature: panoramic roof

2. You receive a new update with additional info in another dictionary:
update info = {"color": "white", "price": 53000}

Merge this update into the original dictionary using one statement,
then print the full dictionary sorted by its keys alphabetically (not manually).

Expected Output:
{'brand': 'Tesla', 'color': 'white', 'features': ['autopilot', 'long
range', 'panoramic roof'], 'model': 'Model Y', 'price': 53000}

3. Your dealership sells multiple cars stored in a nested dictionary:

cars = {
"C101": {"brand": "Tesla", "price": 55000},
"C1l02": {"brand": "BYD", "price": 32000},
"C103": {"brand": "Lucid", "price": 85000}

Write a single loop that prints only the brand name of cars with a price greater than
50000.
Expected Output:

Tesla
Lucid

4. A customer asks to know which features Tesla offers.
Use the car dictionary from Task 1 to print all features,
each prefixed with "Feature — " in separate lines using a loop.
Expected Output:

Feature — autopilot
Feature — long range
Feature — panoramic roof

5. Yourealize "price" was stored incorrectly as a number but should be represented as a
string with “$”” symbol.
Without retyping the value, convert and update it automatically.
Expected Output:

Updated price: $53000

Prepared by: Eng. Alaa Arabiyat Page 5 of 7

Part 4: You are developing a small inventory management tool for a car workshop that stores all
available car parts. Since each part name must be unique and order doesn’t matter, you decide to
use Python sets to manage the data efficiently.

Tasks:

1. Create a set named parts containing the following items:
"engine", "wheel", "mirror", "seat", "wheel"
Then print the total number of unique parts, followed by the full set.

Expected Output:

Total unique parts: 4
{'seat', 'mirror', 'wheel', 'engine'} # order may vary

2. A new delivery arrives containing some additional parts stored in a list:
["door", "tire", "mirror", "bumper"]

Add all these parts to your existing set in one statement only, then print the updated set.

Expected Output:

{'seat', 'wheel', 'engine', 'mirror', 'door', 'tire', 'bumper'} # order
may vary

3. One part "door" was defective and should be removed. Use a method that won’t cause an
error even if the item is missing. Then, check if "roof" exists in the set before trying to
remove it. Print the final set after both operations.

Expected Output:
{'seat', 'wheel', 'engine', 'mirror', 'tire', 'bumper'} # order may vary
4. The workshop wants to separate electronic components in another set:

electronic parts = {"sensor", "battery", "chip", "engine"}

Create a new set all parts that merges both sets without modifying the originals,
then print both sets to verify.

Expected Output:

{'sensor', 'seat', 'wheel', 'engine', 'mirror', 'chip', 'battery', 'tire',
'bumper"' } # order may vary

{'seat', 'wheel', 'engine', 'mirror', 'tire', 'bumper'} # original
unchanged

5. Finally, update the original parts set directly with the electronic components,
then remove one random part from it using the proper method.Print both the removed
item and the final remaining set.

Prepared by: Eng. Alaa Arabiyat Page 6 of 7

Expected Output:

Removed: mirror # may vary
Remaining parts: {'sensor', 'seat', 'engine', 'wheel', 'battery', 'tire',
'chip', 'bumper'} # order may vary

Prepared by: Eng. Alaa Arabiyat Page 7 of 7

Control Flow and Error Exception
(CH5 and CH7)

Prepared by
Dr Mohammad Abdel-Majeed and Eng. Abeer Awad
(Converted to .odp and Modified by Dr Talal A. Edwan)

Outline

* Conditional statements: if, elif, and else.
* for loops.

* while loops.

* Errors and exceptions.

Conditional statements: if, elif, and
else.

if Statements

The simplest kind of if statement has one test and one action

if conditional test:
do something

Notes:

1. You can put any conditional test in the first line and just about any action in the indented
block following the test. If the conditional test evaluates to True, Python executes the code

following the if statement. If the test evaluates to False, Python ignores the code following

the if statement.
age = 19
1f age >= 18:
print ("you are old enough to vote")

you are old enough to vote

2. The print statement is supposed to be indented (one tab or four spaces). Indented lines will
be ignored if the test does not pass.

age = 17
if age >= 18:
print ("you are old enough to vote")
print ("Have you registered to vote yet?")

print ("This statement will be always executed nevertheless the result of if
statement")

This statement will be always executed regardless of the result of if statement

* Python supports the usual logical conditions from mathematics
* Equals: a ==
* Not Equals:a!=b
* Lessthan:a<b
* Lessthanor equalto:a<=b
* Greater than:a>b
* Greater thanor equalto: a>=b

if-else Statements

if conditional_test:
do something
else:

do something else

age = 17
1f age >= 18:
print ("you are old enough to vote")

print ("Have you registered to vote yet?")
else:
print ("Sorry, you are too young to vote.")
print ("Please register to vote as soon as you turn 18!")

Sorry, you are too young to vote.
Please register to vote as soon as you turn 18!

The if-elif-else Chain

if conditional _test 1:

do something
elif conditional_test 2:

do something else
else:

do another thing

age = 12

if age <= 4:
price = 0

elif age < 18:

price = 5
else:
price = 10
print ("Your admission cost is :$" + str(price) + ".")

Your admission cost 1s :S5.

Note: you can use multiple elif statements and you can omit the else block

Testing Multiple Conditions

* The if- elif- else chain is powerful, but it's only appropriate to use when you just need one test to pass. As soon
as Python finds one test that passes, it skips the rest of the tests. This behavior is beneficial, because it’s efficient
and allows you to test for one specific condition. However, sometimes it's important to check all of the
conditions of interest. In this case, you should use a series of simple independent_if statements with no elif or
else blocks.

requested toppings = ['mushrooms', 'extra cheese']
1f 'mushrooms' in requested toppings:
print ("Adding mushrooms.")
1f 'pepperoni' in requested toppings:
print ("Adding pepperoni.")
1f 'extra cheese' in requested toppings:
print ("Adding extra cheese.")

print ("\nFinished making your pizza!")

Adding mushrooms.
Adding extra cheese.

Finished making your pizza!

* We can use if statement to check if a list is not empty

requested toppings =[]

1f requested toppings:

print ("some topping are requested")
else:

print ("you request nothing")

you request nothing

Short Hand If, If ... Else

* If you have only one statement to execute, you can put it on the same line as the
if statement, or the if ... else statements.

|if a > b: print("a is greater than b") |

|print("A") if a > b else print("B") |

* You can also have multiple else statements on the same line

print("A") if a > b else print("=") if a == b else print("B")

10

Use and, or with if statements

* The and/or keywords are logical operators, and are used to combine conditional
statements

=l oW o gl ¢)
OUUN
wo
SCo o

S

and c > a:
"Both conditions are True")

S5V wu

—~

rint

200
33
500
a>bora>c:

prlnt("At least one of the conditions is
True")

=0 oo
Il

Nested if statement

* You can have if statements inside if statements, this is called nested if statements

X =41

if x > 10:
print("Above ten,")
if x > 20:
print("and also above 20!")
else:
print("but not above 20.")

Above ten,
and also above 20!

12

The pass Statement

* if statements cannot be empty, but if you for some reason have an if statement
with no content, put in the pass statement to avoid getting an error.

a=33
b =200

if b > a:
pass

13

for loops

* Loops in Python are a way to repeatedly execute some code statement. We
specify the variable we want to use (N), the sequence we want to loop over
(iterator), and use the in operator to link them in an intuitive and readable way.

for N in iterator:
do something

for N in [2, 3, 5, ©6]:
print (N, end=" ")

2 3 5 6

14

* One of the most commonly used iterator in Python is the range object.
for N in range(10): #N=0,1,2.....9
for N in range(4,30,2): #N=46.8,...,28

* If the iterator is a list, N will be the contents of the list.

students = ['Ali', 'Ahmad', 'Yazan']
for N in students:
print (N)

Ali
Ahmad
Yazan

Note: keep in mind when writing your own for loops that you can choose any name you want for the
temporary variable that holds each value in the list. However, it’s helpful to choose a meaningful name
that represents a single item from the list.

students = ['Ali', 'Ahmad', 'Yazan']
for student in students:
print (student)

* Avoid Indentation Errors

> Forgetting to Indent

> Forgetting to Indent
Additional Lines
(logical error)

students = ['Ali', 'Ahmad', 'Yazan']

for student in students:

print (student)

print (student)

IndentationError:

students = ['Ali',

expected an indented block

'Ahmad', 'Yazan']

for student in students:

print ("hello "

, student)

print ("It's nice to meet you ", student)

hello Ali
hello Ahmad

hello Yazan
It's nice to meet you Yazan

16

- Indenting Unnecessarily

students = ['Ali', 'Ahmad', 'Yazan']

print ("hello world!")

print ("hello world!™)

IndentationkError: unexpected indent

- Indenting Unnecessarily after the for loop

students = ['Ali', 'Ahmad', 'Yazan'] students = ['Alil', 'Ahmad', 'Yazan']
for student in students: for student in students:
print ("hello ", student) print ("hello ", student)
print ('You are the best three students\n') print ('You are the best three students\n')

hello Ali
You are the best three students hello Al1l

hello Ahmad hello Ahmad
You are the best three students hello Yazan
You are the best three students

hello Yazan
You are the best three students

* For loops with dictionaries

* student is the keys in the

studentl = {'name':'Ali', 'grade':'95"'} dictionary
for student in studentl:
print (student)

studentl = {'name':'Ali', 'grade':'95"'} * student is the elements in

student? {"name"':'Ahmad', 'grade':'84"} the list
student?3 {"name':'Yazan', 'grade':'98"}
students = [studentl, student?2, student3]
for student in students:
print (student)

{'"name': 'Ali', 'grade': '95'}

{'name': 'Ahmad', 'grade': '84'}
{'name': 'Yazan', 'grade': '98'}

studentl = {'name':'Ali', 'grade':'95"} > Use .items() to retrieve the

for key, value in studentl.items () : (key, value) pairs
print (key, value)

name Ali
grade 95

studentl = {'name': 'Ali', 'grade':['95', '83']) = Specify which key to take
for N in studentl['grade']: data from
print (N)

19

The break Statement with for loop

* With the break statement we can stop the loop before it has looped through all

the items

fruits = ["apple", "banana", "cherry"]
for x in fruits:
print(x)
if Xx == "banana":
break

apple
banana

* Exit the loop when x is "banana", but this time the break comes before the print

fruits = ["apple", "banana", "cherry"]
for x in fruits:
if x == "banana":
break
print(x)

|app|e |

20

Example:

Output

epsilon = 0.001 # Small error threshold
x = 1.0 # Starting value of x

Loop to perform some calculation
for i in range(1, 100):

X =X /2 # Some operation that decreases the value of x
R print(f'lteration {i}: x = {x}")

if X < epsilon: # If x becomes smaller than epsilon, break the loop
print(f"Breaking the loop at iteration {i} because x < epsilon")
break

lteration 1: x = 0.5

lteration 2: x = 0.25

lteration 3: x = 0.125

Iteration 4: x = 0.0625

Iteration 5: x = 0.03125
Iteration 6: X = 0.015625
Iteration 7: x = 0.0078125
Iteration 8: x = 0.00390625
Iteration 9: x = 0.001953125
Iteration 10: x = 0.0009765625
Breaking the loop at iteration 10
because x < epsilon

Print method with string formatting options.

21

The continue statement with for loop

* With the continue statement we can stop the current iteration of the loop, and
continue with the next

fruits = ["apple", "banana", "cherry"] apple
for x in fruits: cherry
if x == "banana":
continue

print(x)

Example:

Output

for x in range(-2, 3): # Loop over values from -2 to +2 (inclusive)
if x ==0:
print("Skipping x = 0 to avoid division by zero")
continue # Skip this iteration if x is O

fx =1/x # Compute 1/x
print(f"f({x}) = {fx}")

A

f(-2) =-0.5

f(-1) =-1.0

Skipping x = 0 to avoid division by zero
f(1)=1.0

f(2) =0.5

Print method with string formatting options.

23

Else in For Loop

* The else keyword in a for loop specifies a block of code to be executed when the

loop is finished (1)

for x in range(6): 2

print(x) 2

else: c
print("Finally finished!") Finally finished!

* The else block will NOT be executed if the loop is stopped by a break statement.

for x in range(6):
if Xx == 3: break
print(x)

else:
print("Finally finished!")

N O

Nested for Loops

* A nested loop is a loop inside a loop.
* The "inner loop" will be executed one time for each iteration of the "outer loop"

H 11 11 1 H 1 11 1 red apple
adj = ["red", "big", "tasty"] red banana
fruits = ["apple", "banana", "cherry"] red cherry
big apple
for x in ad;j: big banana

for y in fruits: E;gtihaega’e
print(x, y) tasty banana
tasty cherry

Example: Output

_ _ 123
Define a 3x3 matrix 456
matrix = [7809

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

]

Nested loops to print the matrix
for row in matrix: # Loop over each row
for element in row: # Loop over each element in the row

print(element, end="") # Print element with space, stay on same line
print() # Move to the next line after printing a row

26

The pass Statement with for loop

* for loops cannot be empty, but if you for some reason have a for loop with no
content, put in the pass statement to avoid getting an error

for x in [0, 1, 2]:
pass

27

while loops.

Introducing while Loops

* The for loop takes a collection of items and executes a block of code once for each item
in the collection. In contrast, the while loop runs as long as, or while, a certain condition
Is true.

current_ number =1

while current_number <= 5:
print(current_number)
current number +=1

ad w N

Notes:
* The used variable must be defined before the loop.

* The loop keeps testing if the boolean condition is true, it keeps executing the
loop statements.

* The used variable must be changed inside the loop, or infinite loop will occur

* Letting the User Choose When to Quit

prompt = "\nTell me something, and | will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "
message = ""
while message != 'quit":
message = input(prompt)
print(message)

Tell me something, and | will repeat it back to you:
Enter 'quit' to end the program. hello
hello

Tell me something, and | will repeat it back to you:
Enter 'quit’' to end the program. welcome to python
welcome to python

Tell me something, and | will repeat it back to you:
Enter 'quit' to end the program. quit
quit

29

* Using a Flag

prompt = "\nTell me something, and | will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "
active = True

while active:
message = input(prompt)

if message == 'quit":
active = False
else:

print(message)

Tell me something, and | will repeat it back to you:
Enter 'quit' to end the program. hello
hello

Tell me something, and | will repeat it back to you:
Enter 'quit' to end the program. quit

30

* Using break to Exit a Loop

prompt = "\nPlease enter the name of a city you have visited:"
prompt += "\n(Enter 'quit' when you are finished.) "
while True:

City = input(prompt)

if city == "'quit";
break
else:
print("lI'd love to go to " + city.title() + "!")

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) amman
I'd love to go to Amman!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) jerusalem
I'd love to go to Jerusalem!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) quit

31

* Using continue in a Loop

current_ number = 0
while current_number < 10:
current number +=1
If current number % 2 == 0:
continue

print(current_number)

<

O dJdUTWHE

Skip even numbers.

32

The else Statement

* With the else statement we can run a block of code once when the condition no longer

is true

=1
while | < 6:
print(i)
I +=1
else:
print("i is no longer less than 6")

1
2
3
4
5
|

is no longer less than 6

33

* Removing All Instances of Specific Values from a List

pets = ['dog’, 'cat’, 'dog’, 'goldfish’, 'cat’, 'rabbit', 'cat']
print(pets)

while ‘cat' in pets:
pets.remove('cat’)

print(pets)

['dog’, 'cat’, 'dog’, 'goldfish’, 'cat', 'rabbit', 'cat’']
['dog’, 'dog’, 'goldfish’, 'rabbit’']

34

* Filling a Dictionary with User Input

responses = {}
Set a flag to indicate that polling is active.
polling_active = True
while polling_active:
Prompt for the person's name and response.
name = input("\nWhat is your name? ")
response = input("Which mountain would you like to climb
someday? ")

Store the response in the dictionary:
responses[name] = response

Find out if anyone else is going to take the poll.
repeat = input("Would you like to let another person
respond? (yes/ no) ")
If repeat == 'no":
polling_active = False

Polling is complete. Show the results.
print("\n--- Poll Results ---")
for name, response in responses.items():
print(name + " would like to climb " + response + ".")

What is your name? Ali

Which mountain would you like to climb
someday? Everest

Would you like to let another person
respond? (yes/ no) yes

What is your name? Yazan

Which mountain would you like to climb
someday? Elbrus

Would you like to let another person
respond? (yes/ no) no

--- Poll Results ---
Ali would like to climb Everest.
Yazan would like to climb Elbrus.

* Filling a Dictionary with User Input

36

Using a while Loop with Lists and Dictionaries

* Moving Items from One List to Another

unconfirmed_users = ['alice’, 'brian’, 'candace’]
confirmed_users =[]

while unconfirmed_users:
current_user = unconfirmed_users.pop()

print("Verifying user: " + current_user.title())

confirmed_users.append(current_user)
print("\nThe foIIowmg users have been confirmed:")
for confirmed _user in confirmed_users:

print(confirmed_user.title())

Verifying user: Candace
Verifying user: Brian
Verifying user: Alice

Candace
Brian
Alice

The following users have been confirmed:

37

Using a while Loop with Lists and Dictionaries

* Moving Items from One List to Another

38

Errors and exceptions

Errors

No matter your skill as a programmer, you will eventually make a coding mistake.
Such mistakes come in three basic flavours:

1. Syntax errors
Errors where the code is not valid Python (generally easy to fix)
2. Runtime errors

Errors where syntactically valid code fails to execute, perhaps due to
invalid user input (sometimes easy to fix)

3. Semantic errors
Errors in logic: code executes without a problem, but the result
is not what you expect (often very difficult to identify and fix)

Run time errors

Traceback (most recent call last):
File "main.py", line 1, in <module>

int print(Q)
print(Q) NameError: name 'Q' is not defined

Traceback (most recent call last):

File "main.py", line 1, in <module>
print(1 + 'abc') print(1 + 'abc')

TypeError: unsupported operand type(s) for
+: 'Int' and 'str'

40

Run time errors

L=[1, 2, 3]
print(L[100])

Traceback (most recent call last):
File "main.py", line 1, in <module>

print(3/0)
ZeroDivisionError: division by zero

Traceback (most recent call last):
File "main.py", line 2, in <module>

print(L[100])
IndexError: list index out of range

41

Catching Exceptions: try and except

* The main tool Python gives you for handling runtime exceptions is the try...except

clause. Its basic structure is this:

try:
print("this gets executed first")
except:
print("this gets executed only if there is an error")
X = int(input('enter X: '))
y = int(input(‘enter Y: '))
try:
print(x/y)
except:
print(‘something wrong happened!’)
enter X: 10 enter X: 10
enter Y. 5 enter Y: 0
2.0 something wrong happened!

42

* try...except...else...finally
try:
print("try something here")
except:
print("this happens only if it fails")
else:
print("this happens only if it succeeds")
finally:
print("this happens no matter what")

X = int(input('enter X: '))
y = int(input('enter Y: '))

try:
Z = X/ly
except:

print(‘'something wrong happened!’)
else:

print(Z2)
finally:

print(‘be careful with dividing numbers')

enter X: 10

enterY: 5

2.0

be careful with dividing numbers

enter X: 10

enterY: 0

something wrong happened!

be careful with dividing numbers

43

Many Exceptions

* You can define as many exception blocks as you want, e.g., if you want to execute
a special block of code for a special kind of error.

try:
print(x)
except NamekError: « Note the " is not after “except”.
print("Variable x is not defined")
except:
print("Something else went wrong")

Variable x is not defined

44

Raise an exception

* As a Python developer, you can choose to throw an exception if a condition
occurs.

* To throw (or raise) an exception, use the raise keyword, you can define what kind
of error to raise, and the text to print to the user.

x = -1 Traceback (most recent call last):
ifx < 0: File "demo_ref keyword raise.py", line 4, in
raise Exception("Sorry, no humbers below zero") | | <module>

raise Exception("Sorry, no numbers below
zero")

Exception: Sorry, no numbers below zero

Traceback (most recent call last):
File "demo _ref keyword raise2.py", line 4, in
<module>

raise TypeError("Only integers are allowed")
TypeError: Only integers are allowed

x = "hello"
If not type(x) is int:
raise TypeError("Only integers are allowed")

45

Raise an exception

* As a Python developer, you can
choose to throw an exception if
a condition occurs.

e To throw (or raise) an
exception, use the raise
keyword, you can define what
kind of error to raise, and the
text to print to the user.

46

Computer Applications Lab
0907331
Lab Sheet 4: Control Flow and Error Exception

Part 1: You are developing an automated system for an electric car workshop that analyzes
service requests and provides maintenance decisions based on several factors.

Tasks:

Step 1 — Create the following variables:

battery level = 18
temperature = 38

is _electric = True
has warranty = False

Write an if-elif-else structure that:

e Prints "Low battery - charge immediately!" if the battery is below 20.

e Ifnot, checks if temperature is above 35 — print "Warning: high temperature
detected!".

e Otherwise, prints "Battery and temperature are normal."

Then, within the same logic, add another conditional check related to the car type and warranty:

e Ifthe car is electric:

o Print a message that depends on whether it still has a valid warranty or not.
e Ifthe car is not electric:

o Print a message indicating that the service is only for electric cars.

Expected Output:

Low battery - charge immediately!
Maintenance cost applies.

Step 2 — Create the following variables:

battery health = 60
has discount = False
is vip = True
diagnostic _codes = []
owner name = "Ali"
service notes = ""
has id = True
payment done = False

Write code that performs several checks and decisions:

Prepared by: Eng. Alaa Arabiyat Page 1 of 5

Analyze the battery condition and print a message if a replacement is needed.

Determine whether the customer qualifies for a discount using logical operators (or,

and).

3. Use truthy and falsy value checks (not 1en ()) to print appropriate messages based on
whether diagnostic codes, owner name, or service notes exist or are empty.

4. Finally, use a one-line (inline) if-else expression to decide whether the car entry is

"Approved" Or "Rejected" based on having both an ID and a completed payment, then

print the result.

N —

Expected Output:

Battery replacement needed.
Discount applied.

No diagnostic codes found.
Owner name available.
Missing service notes.

Car entry status: Rejected

Part 2: You are designing a smart logging system for a car workshop that tracks both employee
attendance and car maintenance records throughout the day.

The program will process various lists, sets, and dictionaries using different types of loops and
logical controls.

Tasks:
Step 1 — Attendance Tracking System

At the start of the day, the workshop records the names of employees who checked in.
You have the following data:

registered staff = ["Ali", "Ahmad", "Sara", "Yazan", "Rania"]
checked in = ["Ali", "Sara", "Rania"]
late staff = []

You also have a set that stores staff who requested day off:

day off = {"Ahmad"}

And a variable to track if the door sensor system is active:

system active = True
Write a program that performs the following tasks:

¢ Go through all registered staff and determine who checked in, who is late, and who has a
day off.

Prepared by: Eng. Alaa Arabiyat Page 2 of 5

e Ifthe system is inactive, stop processing immediately and print a message that indicates
the system failed.

e Skip any staff who officially have a day off without printing them in the results.

e Add late staff to the 1ate staff list dynamically while looping.

e After processing everyone, print a summary of total checked-in, late, and off-day staff
using formatted output.

e Use at least one for-else or break/continue logic meaningfully during the process.

The logic should be robust enough to handle possible future expansion (e.g., adding new staff
names).

Expected Output:

Checked-in: Ali
Checked-in: Sara
Checked-in: Rania
Late: Yazan

Summary:

- Checked-in staff: 3
- Late staff: 1

- Day-off staff: 1

Step 2 — Maintenance Task Logger

At the end of the day, the workshop’s digital system keeps track of completed maintenance tasks
in a dictionary:

maintenance_ log

= {

"E-Car001": ["battery check", "tire rotation"],
"E-Car002": ["diagnostic test", "sensor calibration"],
"E-Car003": T[]

}

Additional data:

completed tasks = set()

urgent cases = ["E-Car002"]

task count = 0

Your program must:

e Loop through all cars and print each car ID and its tasks one by one, labeling those with
no tasks as "No maintenance performed".

e [Ifacarappears in urgent _cases, print a warning message and immediately stop logging
further cars.

e Use a nested loop to process each task for the current car, and add all completed task
names to the completed tasks set to ensure uniqueness.

e After logging ends, display the total number of cars processed and total unique tasks done
using a clear formatted summary.

Prepared by: Eng. Alaa Arabiyat Page 3 of 5

e Ifno cars were processed (for example, if the first was urgent), print a message
explaining that the system stopped early.

Expected Output (if urgent case occurs after first car):

Car ID: E-Car001
- battery check
- tire rotation

A Urgent maintenance detected for E-Car002! Stopping the logging process...
Summary:

- Cars processed: 1

- Unique completed tasks: 2

Expected Output (if no urgent case is triggered):

Car ID: E-Car001
- battery check
- tire rotation
Car ID: E-Car002
- diagnostic test
- sensor calibration
Car ID: E-Car003
- No maintenance performed
Summary:
- Cars processed: 3
- Unique completed tasks: 4

Part 3: A car company is testing a smart diagnostic program that analyzes sensor data and user
inputs to detect possible malfunctions and handle unexpected system errors.

Design a Python program that simulates a diagnostic test for an electric car system where
multiple types of errors may occur.

Your program should:

e Ask the user to enter the battery temperature and the charging voltage.
o If'the input is not a valid number, handle it properly.
If the entered value is below logical limits (e.g., negative temperature or voltage),
trigger a custom error manually.
e Then, attempt to compute a diagnostic ratio that divides voltage by temperature.
o Handle any possible runtime errors (like division by zero).
e Simulate retrieving additional sensor data from a dictionary (e.g., "speed", "pressure",
"battery status").

sensor_ data = {
"speed": 80,
"pressure": 32,
"battery status": "Good"

o Ifamissing key is accessed, handle that case gracefully.

Prepared by: Eng. Alaa Arabiyat Page 4 of 5

e Include at least one situation that could raise a TypeError or IndexError naturally, and
handle them in a professional way.
e Use a try—except—else—finally structure to organize your code, ensuring that:
o The else block only runs when no errors occur.
o The finally block always runs to print "System check completed." regardless
of errors.
o Ifall checks pass successfully, display a clear summary message showing the computed
diagnostic ratio and confirming that no system errors were detected.

Expected Output Examples

Case 1 — Successful execution:

Enter battery temperature: 40

Enter charging voltage: 12

Diagnostic ratio (voltage/temperature): 0.3
Sensor data retrieved successfully.

No system errors detected.

System check completed.

Case 2 — Invalid number input:

Enter battery temperature: abc
Oops! That's not a valid number.
System check completed.

Case 3 — Negative value triggers custom error:

Enter battery temperature: -5

Enter charging voltage: 12

Error: Invalid input! Values cannot be negative.
System check completed.

Case 4 — Division by zero runtime error:

Enter battery temperature: 0

Enter charging voltage: 12

Cannot divide by zero! Check sensor inputs.
System check completed.

Case 5 — Missing sensor key handled:

Enter battery temperature: 25

Enter charging voltage: 12

Diagnostic ratio (voltage/temperature): 0.48
Warning: Sensor 'temperature sensor' not found!
System check completed.

Prepared by: Eng. Alaa Arabiyat Page S of 5

Functions & Files

Prepared by

Dr Mohammad Abdel-Majeed, Eng. Abeer Awad and Ayah
Alramahi

(Converted to .odp and Modified by Dr Talal A. Edwan)

Outline

* Functions
* Files

Functions

Defining a function
* A function is a block of code which only runs when it is called.
* You can pass data, known as parameters or arguments, into a function.

* A function can return data as a result.

* Function Definition
def function_name(function parameters):

<« »function_definition « » =4 spaces

Function Call

function_name(arguments)

* function definitions cannot be empty, but if you for some reason have a function
definition with no content, put in the pass statement to avoid getting an error.

Docstring

Defining a function-Example

def greet user():
"""Display a simple greeting."""
print ("Hello!") A

greet user()

Docstring

Function with arguments

* A function must be called with the correct number of arguments. Meaning that if
your function expects 2 arguments, you have to call the function with 2
parameters, not more, and not less.

IPython: home/office

File Edit WView Search Terminal Help

def greet user (name) :
"""Display a simple greeting."""
print ("\nHello " + name + "!")

greet user ("Ahmad")

Hello Ahmad!

Passing Arguments

* Python must match each argument in the function call with a parameter in the
function definition

* Positional Arguments: Pairing the arguments with values based on the order of
the arguments provided, Order Matters.

def describe pet(animal type, pet name):
"""Display information about a pet."""
print ("\nI have a " + animal type + ".")
print ("My " + animal type + "'s name 1s " + pet name.title() + ".")

describe pet ('hamster', 'harry')

I have a hamster.
My hamster's name is Harry.

Passing Arguments
* Keyword Arguments: pass the name-value pair to the function

def describe pet(animal type, pet name):
"""Display information about a pet."""
print ("\nI have a " + animal type + ".")
print ("My " + animal type + "'s name is " + pet name.title() + ".")

#Positional Argument
describe pet ('hamster', 'harry')

#Keyword Arguments
describe pet (animal type='hamster', pet name= 'harry')

I have a hamster.
My hamster's name is Harry.

I have a hamster.
My hamster's name is Harry.

Parameter’s Default Values

* If an argument for a parameter is provided in the function call, Python uses the

argument value. If not, it uses the parameter’s default value

* Default parameters should be listed at the end of the parameters list

def describe pet (pet name = "harry", animal type ="dog"):
"""Display information about a pet."""
print ("\nI have a " + animal type + ".")
print ("My " + animal type + "'s name is " + pet name.title()+".")

#Positional Argument
describe pet ('harry')

#Keyword Arguments
describe pet (pet name= 'harry')

I have a
My dog's

I have a
My dog's

dog.
name 1is Harry.

dog.
name 1s Harry.

Return Values

 The value the function returns is called a return value

* The return statement takes a value from inside a function and sends it back to
the line that called the function.

* Returned value can be a list, dictionary, Boolean, string, etc.

def get fullname (first name, last name):
"""Return a full name, nestly formatted."™"
full name = first name + ' ' + last name
return full name.title ()

FullName = get fullname ('Mohammad', 'Ahmad')
print (FullName)

Mohammad Ahmad

Passing a List

def greet users(names):
"""Print a simple greeting to each user in the
for name in names:
msg = "Hello, " + name.title() + "I"
print (msqg)

username = ['hannah', 'ty', 'margot']

greet users (username)

Hello, Hannah!
Hello, Ty!
Hello, Margot!

liSt."""

10

Modifying a List in a Function
* When you pass a list to a function, the function can modify the list.

* Any changes made to the list inside the function’s body are permanent

def add user (names, new user) :
"""Print a simple greeting to each user in the list."""
names.append (new_user)

usernames = ['hannah', 'ty', 'margot']
add user (usernames, 'Tylor')

print (usernames)

["hannah', 'ty', 'margot', 'Tylor']

11

Preventing a Function from Modifying a List

* Pass to the function a copy of the list
* Use Slicing

def users (names) :
"""Print a simple greeting to each user in the list."""
names[0] = 'Tylor'

usernames = ['hannah', 'ty', 'margot']
users (usernames|:])

print (usernames)

["Thannah', 'ty', 'margot']

12

Passing Arbitrary Number of Arguments

* If you do not know how many arguments that will be passed into your function,
add a * before the parameter name in the function definition.

def make pizza (*toppings):
"""Print the list of toppings that have been requested."""
print (toppings)

make pizza ('pepperoni')
make pizza('mushrooms', 'green peppers', 'extra cheese')

('pepperoni',)
('mushrooms', 'green peppers', 'extra cheese')

File

Edit View

IPython: home/office

Search Terminal Help

13

* With arbitrary arguments the function will receive a tuple of
arguments, and can access the items accordingly

def my function (*kids) :
print ("The youngest child is " + kids[2])

my function("Emil", "Tobias", "Linus")

The youngest child is Linus

14

Mixed Arguments

def make pizza(size, *toppings):
"""Summarize the pizza we are about to make."""
print ("\nMaking a " + str(size) +
"-inch pizza with the following toppings:")

for topping in toppings:
print ("- " + topping)

make pizza(l6, 'pepperoni')
make pizza(l2, 'mushrooms',

'green peppers',

'extra cheese')

Making a 16-inch pizza with the following toppings:

- pepperoni

Making a 12-inch pizza with the following toppings:
- mushrooms

- green peppers
- extra cheese

15

Mixed Arguments

wrong

wrong

wrong

wrong

correct

File Edit

\ e
View

IPython: home/office

Search Terminal Help

16

Using Arbitrary Keyword Arguments

* If you do not know how many keyword arguments that will be passed into your
function, add two asterisk: ** before the parameter name in the function

definition. This way the function will receive a dictionary of arguments, and can
access the items accordingly

def build profile(first, last, **user info):
"""Buyild a dictionary containing everything we know about a user."""
profile = {}
profile['first name'] = first
profile['last name'] = last
for key, value in user info.items():
profile[key] = wvalue
return profile
user profile = build profile('albert',6 'einstein',
location="princeton', field='physics')
print (user profile)

{'first name': 'albert', 'last name': 'einstein', 'location':
'erinceton', 'field': 'physicAs'}

Storing Your Function in Modules

* Storing your functions in a separate file called a module and then importing that
module into your main program.

* An import statement tells Python to make the code in a module available in the
currently running program file.

18

Importing an Entire Module

* A module is a file ending in .py that contains the code you want to import into
your Functions program.

* We created a file called Pizza.py and placed the function make_pizza() inside it.

& Functions.py g Pizza.py

make pizzalslize

def make pizza(size, *toppings):
"""Summarize the pizza we are about to make."""
print ("\nMaking a " + str(size) + "-inch pizza with the
following toppings:")
for topping in toppings:
print ("- " + topping)

Importing an Entire Module

* A module is a file ending in .py that contains the code you want to import into
your Functions program.

* We created a file called Pizza.py and placed the function make_pizza() inside it.
* To be able to use this function we imported the Pizza.py module
* We call the function using the module_name.function_name()

e Functions.py lizza.py Making a 12-inch pizza with the following toppings:

— mashrooms

Pizza.make pizza (

import Pizza
Pizza.make pizza(l2,"mashroom")

20

Using “as” to Give a Module an Alias

import Pizza as P
P.make pizza (12, "mashroom")

21

Importing Specific Function
* You can also import a specific function from a module not the entire module
from module_name import function_nam

from module_name import function_O, function_1, function_2

@ Functions.py

from Plzza import make pizza
make pizza(l2,"mashroom")

22

Using “as” to Give a Function an Alias

g Functions.py

from Pizza import make pizza as mp
mp (12, "mashroom™")

23

Importing All Functions in a Module

& Functions. Py

from Pizza i1mport *
make pizza(l2,"mashroom")

24

Example: Generate a 2D Random Matrix

office@hawk: ~f/Desktop

File Edit WView Search Terminal Help
import randor

ef generate matrix(rows

al) for in range(cols)] for in range(rows

- ._.'. ln — -
print|

return matrai

Right justified with total length of 4
Example: "7".rjust(4) - " 7" (3 spaces + 7 - total width = 4)

Example: Generate a 2D Random Matrix (cont.)

office@hawk: ~fDesktop

Edit View Search Terminal Help
T

def generate_matrix(rows

al) for in rangeicols)] for in range(rows

= p .L,
oW in matrix
print|

return matri

Right justified with total length of 4
Example: "7".rjust(4) - " 7" (3 spaces + 7 - total width = 4)

Lambda function

* A lambda function can take any number of arguments, but can only have one
expression.

lambda arguments : expression

x = lambda a : a*3 |15 I
print (x(5))

* The power of lambda is better shown when you use them as an anonymous
function inside another function.

def myfunc(n) :
return lambda a : a * n |22 I

mydoubler = myfunc (2)
print (mydoubler (11))

Example:

* A lambda function that multiplies argument a with argument b and print the

result:

X = lambda a,
print (x(5,4))

b:

a

*

b

20

28

Files

Reading from a File

* When you want to work with the information in a text file, the first step is to read
(load) the file into memory. You can read the entire contents of a file, or you can
work through the file one line at a time.

* You should open the file before accessing it.
* open(filename) function looks for the file in the current directory.
* close() function closes the file: improperly closed files can cause data loss

Random Data

ocess finished with exit code 0

file obj = open('data.txt')
print (file obj.read())
file obj.close() 29

* There are four different methods (modes) for opening a file
"r" - Read - Default value. Opens a file for reading, error if the file does not exist
"a" - Append - Opens a file for appending, creates the file if it does not exist
"w'" - Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists
* |n addition you can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

Read Only Parts of the File

* By default the read() method returns the whole text, but you can also specify
how many characters you want to return

f = open("file.txt", "r")
print (f.read (5))# read five characters

* You can return one line by using the readline() method

f = open("file.txt", "r")
print (f.readline()) # read the first line

* By calling readline() two times, you can read the two first lines

31

* By looping through the lines of the file, you can read the whole file, line by line

f = open("file.txt", "r")
for x in f:

print (x) # remember: inserts a new line by default
f.close ()

Reading from a File—with Keyword

* with keyword closes the file once access to it is no longer needed

with open('data.txt') as file object:
contents = file object.read()
print (contents)

33

File Path

* If the file is not in the same folder of the currently running python program then
you need to provide the file path (use forward slash in windows if backslash does

not work)

with open(r'C:/Users/mohammad/data.txt"')
as file object:

contents = file object.read()

print (contents)

filepath = 'C:/Users/mohammad/data.txt"
with open(filepath) as file object:
contents = file object.read()
print (contents)

Random data

34

USB STICK

desktop_Files

IPython: experiments/exp5s
File Edit View Search Terminal Help

data.bxt Python 3.10.12 (main, Feb 4 2825, 14:57:36) [GCC 11.4.0]

3 AL

copyright', ‘'credits' or 'license' for more information

e i
IPython 8.22.2 -- An enhanced Interactive Python. Type or help

b, A A

1 (r'/home/office/Desktop/data.txt") file object
contents = file object.read()
(contents)
This is a test file
It is a text file

2]: []

Reading Line by Line

* You can use a for loop on the file object to examine each line from a
file one at a time

filepath = 'C:/Users/mohammad/data.txt’
with open(filepath) as file object:
for L in file object:
print (L)

36

Reading the text file as a one string T

File Edit View Search Terminal Help

on 3.10.12

* What is the output for each code?

filepath = 'C:/Users/mohammad/data.txt’
with open(filepath) as file object:

contents = file object.read()
for L in file object:
print (L)

file_object: points to the
end of the file.
output: nothing.

filepath = 'C:/Users/mohammad/data.txt’
with open(filepath) as file object:

contents = file object.read()
for L 1n contents:
print (L)

file_object: points to the end of
the file.

contents: has the data of the
text file as one string.

output: print each character of
the string contents. 37

* What is the output for each code?

filepath = 'C: /Users/mohgmmad/glata Ltxt! file_object: points to the
with open (fllepath) as. file object: end of the file.
;g?tinz’i Zoiiéigzk[)%ég]t -read() contents: has the data of the
orint (L) text file as one string.

output: print the characters
of the string contents with
index 0 and 1.

38

Making a list of lines from a File

* If you want to retain access to a file's contents outside the with block,
you can store the file's lines in a list inside the block and then work
with that list.

filepath = 'C:/Users/mohammad/data.txt" s s
with open(filepath) as file object: File Edit View Search Terminal Help
contents = file object.readlines()

for L in contents:
print (L)

Random Data LineO
Random Data Linel
Random Data Line2
Random Data Line3

Random Data Line4

39

Strip Functions

filepath = 'C:/Users/mohammad/data.txt’
with open(filepath) as file object:
contents = file object.readlines()

for L in contents:
print (L.strip())

Random Data LineO
Random Data Linel
Random Data Line?2
Random Data Line3
Random Data Line4

40

filepath = 'C:/Users/mohammad/data.txt"
with open(filepath) as file object:
contents = file object.readlines()

One_Line= !
for L in contents:
One_Line += !

print (One Line)

Random Data Line0 Random Data Linel Random Data Line2 Random Data Line3 Random Data Line4

41

Writing to a File

Writing to a File

* To write text to a file, you need to call open() with a second argument telling
Python that you want to write to the file.

* Set the second argument of the open() function to ‘w’ to open the file in the
Write mOde. IPython: experiments/exps

° ‘a) % Opens the ﬁle in append mode. File Edit View Search Terminal Help

16

* r’ = Opens the file in read mode.

filepath = 'C:/Users/mohammad/data.txt"
with open(filepath, 'w ') as file object:
file object.write ('Random Data Line 5 ")

with open(filepath) as file object:
print (file object.read()) Random Data Line 5

42

* The open() function automatically creates the file you're writing to if it doesn’t
already exist. However, be careful opening a file in write mode ('w') because if
the file does exist, Python will erase the file before returning the file object.

filepath = 'C:/Users/mohammad/data.txt’
with open(filepath) as file object:

print ('The Content of the file before opening it for write:\n '
+file object.read())

with open(filepath, 'w') as file object:
print ('File opened for write:\n ' (

with open(filepath) as file object:
print ('The Content of the file before opening it for write:\n ')
+file object.read())

The Content of the file before opening it for write:
Random Data Line O
File opened for write:

'The Content of the file before opening it for write:

43

filepath = 'C:/Users/mohammad/data.txt’

with open (filepath, '
file object.write
(

Random Data Line 0"'")

w') as file object:
' Random Data Line 1"')

file object.write
with open(filepath) as file object:

print ('The Content of the file after writing:\n ')
+file object.read())

The Content of the file after writing:
Random Data Line 0 Random Data Line 1

44

Writing to a file--append

filepath = 'C:/Users/mohammad/data.txt’

with open(filepath) as file object:
print ('The Content of the file before appending:\n ') +file object.read())

with open(filepath, 'a') as file object:
file object.write('\nRandom Data Line 2\n ')
file object.write ('Random Data Line 3'")

with open(filepath) as file object:
print ('The Content of the file after appending:\n ') +file object.read())

The Content of the file after appending:
Random Data Line O
Random Data Line 1

The Content of the file after appending:
Random Data Line 0
Random Data Line 1
Random Data Line 2
Random Data Line 3

45

Exceptions Handling Using try-except Blocks

* You tell Python to try running some code, and you tell it what to do if the code

results in a particular kind of exception.

try:

except:

#Code goes here

#what to do in case the code inside the try block created an exception

46

Handling the FileNotFoundError Exception

* One common issue when working with files is handling missing files

* Different location
* Filename misspelled
* File may not exist at all

filepath = 'C:/Users/mohammad/datal.txt’

with open(filepath) as file object:
print ('The Content of the file before appending:\n ') +file object.read())

with open (filepath) as file object:

FileNotFOundError: [Errno 2] No such file or
directory : 'C:/Users/mohammad/datal.txt’

47

filepath = 'C:/Users/mohammad/datal.txt’

try:
with open(filepath) as file object:
print ('The Content of the file before appending:\n ')
+file object.read())

Except FileNotFOundError:
print ('The file ' + filepath + ' is not found'

The file C:/Users/mohammad/datal.txt is not found

filepath = 'C:/Users/mohammad/data.txt'

try:

with open(filepath) as file object:

content =

file object.read()

except FileNotFoundError:

print ('The file

else:
print (content)

' + filepath + ' is not found '

om Data Line O
om Data Line 1
om Data Line 2
om Data Line 3

49

Failing Silently Using pass

filepath = 'C:/Users/mohammad/data.txt"

try:
with open(filepath) as file object:
content = file object.read()

except FileNotFoundError:
pass

else:
print (content)

print ('done')

done

50

* Delete a File

* To delete a file, you must import the OS module, and run its os.remove() function

import os
os.remove("file.txt")

* Check if File exist: To avoid getting an error, you might want to check if the file
exists before you try to delete it

import os
if os.path.exists("file.txt"):
os.remove("demofile.txt")
else:
print("The file does not exist")

51

Storing Data

* Sometimes you need to store the information users provide in data structures
such as lists and dictionaries.

* When users close a program, you'll almost always want to save the information
they entered.

* A simple way to do this involves storing your data using the json module.

52

Example of JSON file:

office@hawk: ~/Desktop/desktop_Files/Spring_2025/CAL/experiments/exp5s

File Edit Wiew Search Terminal Help

=
1

city
postcode

json.dump() and json.load()

import json

numbers = [2, 3, 5, 7, 11, 13]
filepath =
'C:/Users/mohammad/numbers. json’

with open(filepath, 'w') as file object:

json.dump (numbers, file object)

with open(filepath, ‘r') as file object:
print (Json.load(file object))

import json

numbers = [2, 3, 5, 7, 11, 13]

filepath = 'C:/Users/mohammad/numbers.json'’

with open(filepath, 'w') as file object:
Json.dump (numbers, file object)

with open(filepath, 'r') as file object:
x = Json.load(file object)
print(x[3])

54

Computer Applications Lab
0907331
Lab Sheet 5: Functions & Files

Part 1:

You are tasked with designing a Python program for a smart car workshop that manages
employee greetings, task assignments, food orders, and task efficiency. The program should
involve function definitions, positional and default arguments, ***args and kwargs, lambda
functions, and module imports.

Step 1 — Staff Greeting System

o Design a function that takes an employee’s name and prints a personalized greeting
message.

o Design a second function that accepts any number of employee names and uses the first
function to greet each one.

« Call the second function with at least three employee names.

Expected Output:

Hello Ali!
Hello Sara!
Hello Hamza!

Step 2 — Task Assignment and Calculation

« Design a function to assign tasks to employees. It should take the task name, the
employee’s name, and a priority level (use a default value if not specified).

e The function should print the assigned task and its priority, and return the task
information in an appropriate data structure (e.g., a dictionary).

« Call the function twice: once using the default priority and once with a custom priority.

o Design a small function or a lambda function that calculates the estimated hours to
complete a task using a multiplication factor.

Expected Output:

Assigning task: 0Oil Change to Ali with priority Normal
Task Info: {'task': 'Oil Change', 'assigned to': 'Ali', 'priority': 'Normal'}

Assigning task: Tire Rotation to Sara with priority High
Task Info: {'task': 'Tire Rotation', 'assigned to': 'Sara', 'priority':

"High'}

Estimated time for task: 6 hours

Step 3 — Workshop Dessert Order Module

Prepared by: Eng. Alaa Arabiyat Page 1 of 4

e There is a module dedicated to dessert operations, containing functions for printing
dessert type, adding ingredients, baking, and delivering.

e Import the module using an alias.

o Order a dessert with a specific type and multiple ingredients, then bake and deliver it
using the module functions.

Expected Output:

Preparing a Chocolate Cake with the following ingredients:
- chocolate

- strawberries

Baking the dessert... Please wait!

Dessert is on the way to your home!

Step 4 — Staff Task Efficiency Calculator

« Design a function that accepts a multiplier for an employee. This multiplier adjusts task
duration based on their efficiency (for example, >1 means slower, <1 means faster).

e The function should return a lambda function that calculates total hours for a task using
the formula:

total hours = base hours * multiplier
« Create two separate efficiency calculators for two different employees using this
function.

o Compute the estimated hours for two tasks using these calculators.
« Print a summary showing the employee, the task, and the calculated hours.

Expected Output:

Ali's task estimated hours: 8
Sara's task estimated hours: 15

Part 2:

You are tasked with designing a Python program for a smart car workshop to manage file
operations, record keeping, and error handling. The program should involve reading from files,
writing and appending data, handling exceptions, and processing text data.

The data file for this assignment is named:

workshop log.txt

Content of workshop log.txt:

Monday: 0Oil Change, Tire Rotation

Prepared by: Eng. Alaa Arabiyat Page 2 of 4

Tuesday: Battery Check, Sensor Calibration
Wednesday: Engine Diagnostic

Thursday: Car Wash

Friday: Brake Inspection, Tire Alignment

Step 1 — Reading and Summarizing File Content

« Open and read the entire content of workshop log.txt as a single string.

o Print a clear message with the full content.

e Then, read the file line by line, storing each line in a list.

e Loop over the list and print each day’s tasks individually, removing any extra spaces or
newline characters.

« Finally, combine all tasks into one single string and print it.

Expected Output (illustrative):

== Full content of the file ==

Monday: 0Oil Change, Tire Rotation

Tuesday: Battery Check, Sensor Calibration
Wednesday: Engine Diagnostic

Thursday: Car Wash

Friday: Brake Inspection, Tire Alignment

== Individual day tasks ==

Monday: 0Oil Change, Tire Rotation

Tuesday: Battery Check, Sensor Calibration
Wednesday: Engine Diagnostic

Thursday: Car Wash

Friday: Brake Inspection, Tire Alignment

== All tasks combined ==

Monday: 0il Change, Tire Rotation Tuesday: Battery Check, Sensor Calibration
Wednesday: Engine Diagnostic Thursday: Car Wash Friday: Brake Inspection,
Tire Alignment

Step 2 — Writing and Appending New Entries

e Open the file in write mode and replace its content with two new log entries for the
weekend (Saturday and Sunday).

« Print the file content to verify the update.

e Then, open the file in append mode and add two more tasks for Monday of the next
week.

e Print the file content again to verify that the new lines were added without deleting
existing ones.

Expected Output (illustrative):

== File content after writing new entries ==
Saturday: Air Filter Replacement
Sunday: Car Detailing

Prepared by: Eng. Alaa Arabiyat Page 3 0f 4

== File content after appending ==
Saturday: Air Filter Replacement
Sunday: Car Detailing

Monday: Tire Rotation

Monday: 0il Change

Step 3 — Handling Missing Files and Deleting

o Simulate accessing a file that may not exist. Use exception handling to catch
FileNotFoundError and print a friendly message if the file is missing.

o If the file exists, read and print its content.

« Finally, check if the file exists and delete it safely, printing a confirmation message if
deletion succeeded or a message if the file was not found.

Expected Output (illustrative if file exists):

Reading file content:

Saturday: Air Filter Replacement
Sunday: Car Detailing

Monday: Tire Rotation

Monday: 0Oil Change

File deleted successfully.
Expected Output if the file is missing:

The file 'workshop log.txt' is not found

Prepared by: Eng. Alaa Arabiyat Page 4 of 4

o’

N?7 NumPy

NumPy
(Numerical Python)

Prepared by
Dr Mohammad Abdel-Majeed.
(Converted to .odp and Modified by Dr Talal A. Edwan)

Note: This version of the slides is not intended for printing due to the use of coloured content on a dark grey background.

Outline

Create ndarrays.

Indexing and slicing.

v Integer.
v Boolean.

Mathematical operations.

Useful functions.

Save and loac
Linalg and Sci

numpy arrays.

Dy.

Introduction

* NumPy

v Numeric Python.
v Fast computation with n-dimensional arrays.
v Used for data science.

NumPy

In Python we have lists that serve the purpose of arrays, but they are
slow to process.

NumPy aims to provide an array object that is up to 50x faster than
traditional Python lists.

The array object in NumPy is called ndarray, it provides a lot of
supporting functions that make working with ndarray very easy.

Arrays are very frequently used in data science, where speed and
resources are very important.

NumPy arrays are stored at one continuous place in memory unlike lists,
SO processes can access and manipulate them very efficiently. This
behavior is called locality of reference in computer science.

Import with: import numpy as np
Use it as: np.command (XXX)

ndarrays

* Zero dimensional arrays

a=np.array(42)

* One dimensional araay
a=np.array([5,67,43,76,2,21])

* Two dimensional array
a=np.array([[4,5,8,4],[6,3,2,1],[8,6,4,3]])

* Three dimensional array a=np.array([[[1, 2, 3],
[4, 5, 611,[[1, 2, 3], [4, 5, 6111

* Higher dimensional arrays
a = np.array([1, 2, 3, 4], ndmin=5)

* Use a tuple to create a NumPy array
a = np.array((1, 2, 3, 4, 5))
* Numpy Arrays provides the ndim attribute that

returns an integer that tells us how many
dimensions the array have.

import numpy as np
a np.array(42)

b =np.array([1l, 2, 3, 4, 5]) 0]
c = np.array([[1l, 2, 3], [4, 5, 6]1]) 1
d = 2
print(a.ndim 3

print(b.ndim
print(c.ndim
print(d.ndim

(
(
(
np.array([l[[1, 2, 3], [4, 5, 6]1, [I[1, 2, 3], [4, 5, 6]1])
)
)
)
)

Random Numbers in NumPy

* np. random.randint(low, high=None, size=None, dtype=int
Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the
specified dtype in the “half-open” interval [low, high). If high is None (the
default), then results are from [0, low).

* np.random.randn(do, di, ..., dn)

Return a sample (or samples) from the “standard normal” distribution. dn
the dimensions “standard normal” where o=1 and p=0.

For random samples with different o and p:
sigma * np.random.randn(...) + mu

Random Numbers in NumPy --
Example

File Edit Wiew

np.random.

15 sigma =
16 sigma * np.

'.1‘145435,

)
98023 , 4.

]

random.

Search Terminal Help

randn|(

randn(

6915728
5115734
33431031,
.31044753,

2.26718689,

3.4374468
> 85732434,

34220014,
17 mean = mu;

18]: []

03778882, '2599 5864
3.28025254,
> 17752199,

standard deviation

IPython: office/Desktop

1210165911,
.07429542,
3.04303051]])

Create ndarray -- Example

import numpy as np

a = np.array([1, 2, 3]) # Create a rank 1 array

print(type(a)) # Prints '"<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"

print(a[0], a[1], a[2]) # Prints "1 2 3"

a[0] =5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[©, 0], b[o0, 1], b[1, ©0]) # Prints "1 2 4"

Create ndarray -- Example

import numpy as np

a = np.zeros((2,2)) # Create an array of all zeros

print(a) # Prints "[[0. 0.]
[0. 0.]]"
b = np.ones((1,2)) # Create an array of all ones
print(b) # Prints "[[1. 1.]]"
c = np.full((2,2), 7) # Create a constant array
print(c) # Prints "[[7. 7.]
[7. 7.]]"
d = np.eye(2) # Create a 2x2 lidentity matrix
print(d) # Prints "[[1. 0.]
[0. 1.]]"
e = np.random.random((2,2)) # Create an array filled with random values
print(e) # Might print "[[0.91940167 0.08143941]

[0.68744134 0.87236687]]"

10

Create ndarray -- Example

import numpy as np

datal = [6, 7.5, 8, 0, 1]

arrl = np.array(datal)

print (arrl) #[6. 7.5 8. 0. 1.

dataz = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
print(arr2) #[[1 2 3 4]
#[5 6 7 8]]
print(arr2.ndim) #2
print (arr2.shape) #(2,4)
print (arr2.shape[0]) #2
print (arr2.shape[1l]) #4

11

Create ndarray -- Example

import numpy as np

arrl = np.full((5,2,3),6)
print (arrl)

(2]

[[[6
[6

6]
6]]

6]
6]]

6]
6]]

6]
6]]

6]
6]11]

(2]

»

[[6
[6

(2]

»

[[6
[6

o

(o))

[[6
[6

(2]

o

[[6
[6

(2]

12

Data Types 1

NumPy Data Types 1

bool

Boolean (True or False) stored as a byte

int_

Default integer type

intc

ldentical to C int e.q int32 in54

intp

Integer used for indexing

intd

Byte (-128 to 127)

int1&

Integer (-32768 to 32767)

int32

Integer (-2147483648 to 2147483647)

intG4

Integer (-92233720363854775808 to 9223372036854775807)

uintd

Unsigned integer (0 to 255)

uint16

Unsigned integer (0 to 65535)

uint32

Unsigned integer (0 to 4294967295)

uintod

Unsigned integer (0 to 18446744073709551615)

float1s

Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

float32

Single pracision float: sign bit, 8 bits exponent, 23 bits mantissa

floatcd

Double precision float: sign bit, 11 bits exponant, 52 bits mantissa

complextd

Complex number, represented by two 32-bit floats (real and imaginary components)

complex128

Complex number, represented by two 64-bit floats (real and imaginary components)

13

Create ndarray -- Example

import numpy as np

datal = [6, 7.5, 8, 0, 1]

arrl = np.array(datal,dtype = np.bool)

print (arrl) #[True True True False True]

dataz = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2,np.float32)
print(arr2) #[[1. 2. 3. 4.]

#[5. 6. 7. 8.]]
print(arr2.ndim) #2
print (arr2.shape) #(2,4)
print (arr2.shapep[0]) #2
print (arr2.shape[l]) #4
print(arr2.dtype) #float32

14

Change Array’s Data Type

import numpy as np

arr = np.array([3.7, -1.2, -2.6])
print(arr) #[3.7 -1.2 -2.6]
print (arr.astype(np.int32)) #/ 3 -1 -2]

15

Indexing and Slicing

* Indexing can be done using the indices of the
elements that you want to access, or by
using slicing.

* Similar to Python lists, numpy arrays can be
sliced.

import numpy as np

arr = np.arange(10)

print (arr) #/0 1 2 3 4 5 6 7 8 9]

print (arr[5])#5

print (arr[5:8]) #[5 6 7]

arr[5:8] = 12

print (arr) #/ 0 1 2 3 4 12 12 12 8 9]

16

Indexing and Slicing (cont.)

* Since arrays may be multidimensional, you must
specify a slice for each dimension of the array:

* Aslice of an array is a view into the same data, so
modifying it will modify the original array.

import numpy as np

arr = np.arange(10)

arr_slice = arr[5:8]

arr_slice[1l] = 12345

print (arr_slice) #[5 12345 7]

print (arr) #[0 1 2 3 4 5 12345 7 8 9]
arr_slice[:] =64 #[0 1 2 3 4 64 64 64 8 9]
print (arr)

17

2D array

* The data of each row should be between two square
brackets.

* Slicing array:

arr[R]: row R, and all columns, R could be range.

import numpy as np
arr2d = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr2d[2]) #[7 8 9]
print (arr2d[:2]) #[[1 2 3]
[4 5 6]]

arr[R, C]: row R, and column C, can be written arr[R][C]
R and C could be range of numbers.

arr2d = np.array ([[21, 2, 3], [4, 5, 6], [7, 8, 9]])
print (arr2d[0, 2]) #3
print (arr2d[0][2]) #3

18

Indexing with slices in 2D Array --

Examples

arr[Rlist, Clist] : match each item in the Rlist with the

items in the Clist.

import numpy as np

print (arr2d) #[[1 2 3]
[4 5 6]
[7 8 9]]

arr2d = np.array([[1, 2, 3], [4,

5, 6],

[7, 8, 911)

print (W@,g]) # [4 8] items:(1,0),(2,1)

Row 1 Column O Row 2

Column 1

19

Indexing with slices in 2D Array --
Examples

import numpy as np
arr2d = np.array(
[[11 21 3]1

[41 51 6]1

[7, 8, 911) °
print (arr2d[1, :2])
print (arr2d[2, :1])
print (arr2d[:, :1])

Indexing with slices in 2D Array --

Examples

import numpy as np [4 5]

arr2d = np.array(

[[11 2/ 3]/

[41 5/ 6]/ [7]

[7, 8, 911)

print (arr2d[1, :2]) [[1]

print (arr2d[2, :1])

print (arr2d[:, :1]) [4]
[7]]

Indexing Elements in a numpy Array
axis 1

0 1 2

0 0,0 0,1 0,2

axis 0 1 1,0 1,1 1,2

Two-
dimensional
array
slicing

Expression

arr[:2, 1:]

arr[2]
arr[2, :

arr[2:, :]

arr[:, :2]

arr[1, :2]
arr[1:2, :2]

Shape

(2, 2)

(3,)
(3,)
(1, 3)

(3, 2)

(2,)

(1, 2)

a=np.array([
[
[3, 1],[4, 3]
],

[
[2, 4],[3, 3]

3D 2Xx2x2

!
™
L 4

a=np.array([
[
[3, 1],[4, 3]
],
[
[2, 4],[3, 3]
]

Indexing

Indexing (cont.)

a=np.array([

[a [1] .2, 4
3, 11,04, 3] 13,3
], 3,1
| 4,3

[2, 4],[3, 3]
]

Indexing (cont.)

a=np.array(|

[

[3, 11,4, 3] 3,1
1 4, 3
[alo][o]

[2, 4],[3, 3]
]

Indexing (cont.)

a=np.array(|

[

[3, 11,14, 3] 3,1
) 4,3
[afo][o][0]

[2, 4],[3, 3]
]

Indexing (cont.)

a=np.array(|

[

(3, 11,[4, 3] 351
], 4. 3

[

> a3 al0][1]
]

Indexing (cont.)

a=np.array(|

[

(3, 11,[4, 3] 351
], 4. 3

[

> a3 al[1][0]
]

Slicing

a=np.array(|

[

[3, 11,14, 3] 3,1

1 4, 3

[

> a3 ale,0,0]
]

Slicing (cont.)

a=np.array([

[

[3, 11,14, 3] 3,1

I 4, 3

' ale,1,0]

;2, 41,13, 3] / T T

]) First 2D matrix Row 1 Column O

Slicing (cont.)

a=np.array(][

|

[3, 1],[4, 3]

|

[=t

2, 41,13, 3] 4,3

| .
af:,0]

Slicing (cont.)

a=np.array(|

[
[3, 11,[4, 3]
]
[
[2, 4],[3, 3]
]

3,1
4,3
al:,:,0]

Both slices, both
rows, column O

Example:

Define a 3D
array using
numpy.

From all 2D
matrices,
row 0.

From all 2D

matrices,
column O.

From all 2D
matrices,
row 0.

You cannot
do this!

Integer Array Indexing

* [nteger array indexing allows you to construct

arbitrary arrays using the data from another
array. Here is an example:

import numpy as np

a = np.array([[1,2,3], [4,5, 5], [7,8, 9],[16,11,12]])
print(a)

print (a[[1, 3, 0]])

print (a[[-3, -1, -2]])

36

Integer Array Indexing

* |nteger array indexing allows you to construct
arbitrary arrays using the data from another
array. Here is an example:

#[[1 2 3]

[4 5 5]

#[7 8 9]
import numpy as np # [10 11 12]]
a = np.array([[1,2,3], [4,5, 5], [7,8, 9],

#[[4 5 5
[10,11,12]]) 4 110 11 1]
print(a) #[1 2 3]]
print (a[[1, 3, 0]])
print (a[[-3, -1, -2]]) z[h;’ 1:? 1%

[7 8 9]]

37

Integer Array Indexing (cont.)

import numpy as np
a = np.array([[2,2,3], [4,5, 5], [7,8, 9],[10,11,12]])

print(af[[o, 1, 2], [0, 1, 0]])
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

print(af[[o, 0], [1, 1]])
print(np.array([a[0, 1], a[0, 1]]))

38

Integer Array Indexing (cont.)

import numpy as np

a = np.array([[1,2,3], [4,5, 5], [7,8, 9],[16,11,12]])

print(al[®, 1, 2], [0, 1, 0]]) #[1
print(np.array([a[0, 0], a[1, 1], a[2, O] # 1
print(af[[0, 0], [1, 1]]) #[2
print(np.array([a[0®, 1], a[0, 1]])) #[2

5 7]
5 7]
2]

2]

39

Boolean Array Indexing

import numpy as np

a = np.array([5,12,50,33,12])
print(afa_index]) # [5 12 12]]

a_index= np.array([True, True,False,False, True])

import numpy as np
import numpy as np
arr2d = np.array([[1, 2, 3], [4, 5, 6],
print (arr2d[[True,True,False],1])#[2 5],

[7, 8, 9]1])
rows:0,1; col:1

print (arr2d[[True,True,False], [True,True,False]]) #[1 5]

#(0,0) ,(1,1)

40

Stacking

* Create an array by stacking numpy arrays.

X = np.arange(0,10,2) # x=([0,2,4,6,8])
y = np.arange(5) # y=([0,1,2,3,4])
m = np.vstack([x,y]) # m=([[0,2,4,6,8],

[0,1,2,3,4]])
Xy = np.hstack([x,y]) # xy =([0,2,4,6,8,0,1,2,3,4])

41

* Create an array by stacking numpy arrays.

v vstack: Stac
v’ hstack: Stac
v dstack: Stac

K d
K d

K d

Stacking

ong first axis.
ong second axis.

ong the third axis.

X
y
m

np.arange(0,10,2) # x=([0,2,4,6,8])
np.arange(5) # y=([0,1,2,3,4])
np.vstack([x,y]) # m=([[0,2,4,6,8],

[0/1/2/3/4]])

Xy = np.hstack([x,y]) # xy =([0,2,4,6,8,0,1,2,3,4])

42

Broadcasting -- Mathematical
operations

* Basic mathematical functions operate
elementwise on arrays,

v Available both as operator overloads and as
functions in the numpy module

v Numpy operations are usually done on pairs of
arrays on an element-by-element basis

v Between arrays and scalar value and array

For more details and examples:

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Element-wise operations and
Mathematical Manipulation of Arrays

import numpy as np

arr = np.arange(9).reshape((3, 3))
print (arr)

print (arr*arr)

[[0 1 2]
[3 4 5]
[6 7 8]]

[[0 1 4]
[9 16 25]
[36 49 64]]

44

Element-wise operations (cont.)

import numpy as np

arr = np.arange(9).reshape((3, 3))
print (arr)

print (np.sqrt(arr))

print (np.exp(arr))

[[0 1 2]

[3 4 5]

[6 7 8]]
[[O. 1. 1.41421356]
[1.73205081 2. 2.23606798]

[2.44948974 2.64575131 2.82842712]]

[[1.00000000e+00 2.71828183e+00 7.38905610e+00]
[2.00855369e+01 5.45981500e+01 1.48413159e+02]
[4.03428793e+02 1.09663316e+03 2.98095799e+03]]

Elementwise Operations -- Scalar

import numpy as np

arr = np.arange(9).reshape((3, 3))
print (arr)

print (arr * 3)

print (arr + 4)

[[0 1 2]
[3 4 5]
[6 7 8]]

[[@ 3 6]
[9 12 15]
[18 21 24]]

[[4 5 6]

[7 8 9]

[10 11 12]]

46

Elementwise Operations -- Scalar
(cont.)

import numpy as np

data = np.arange(5,dtype=np.int32)

print (data)#/0 1 2 3 4]

print (data * 10)#/ 0 10 20 30 40]
print (data + data)#/0 2 4 6 8]

print (1/((data+1)))#/[1.

0.5 0.33333333 0.25 0.2]

47

Element wise Operations
Statistics (max, min, sum)

import numpy as np

X np.random.randn(4)
y np.random.randn(4)
y np.round(y,1)
print(x)

print(y)
print(np.maximum(x, VY)

print(np.exp(x))
print(np.round(y))

print(np.add(x,y)) #Equivalent to x + y

)

[0.10762685 -0.10194233
[-0.2 -0.9 -0.4 0.3]

[0.10762685 -0.10194233
[-0.09237315 -1.00194233
0.5558414572185999
[1.11363211 0.90308163 0.
[-0.2 -0.9 -0.4 0.3]
[-0. -1. -0. 0.]

-0.31373994 0.86389688]

-0.31373994 0.86389688]
-0.71373994 1.16389688]

73070903 2.37238762]

48

Inner Product

import numpy as np

import numpy as np

arr = np.arange(9).reshape((3, 3))
print (arr)

print (arr.T)

print (np.dot(arr, arr.T))
print(np.matmul(arr,arr.T))

[[0 1
[3 4
[6 7

[[O 3
[1 4
[2 5

[l 5
[14
[23

[l 5
[14
[23

2]

5]

811

6]

7]

811

14 23]
50 86]
86 149]]
14 23]
50 86]
86 149]]

49

AXis operations

* Instead of applying the mathematical
operations on the entire array they can be
done per-row or per-column

v You should specify the axis.
v axis=0 = applied on each column.
v axis=1 — applied on each row.

AXis operations

import numpy as np
arr = np.array([[0, 1, 2],
[31 4/ 5]/
[6, 7, 8]])
print (arr) #[[0 1 2]
[3 4 5]
#[6 7 8]]
print (arr.mean(axis=0)) #/[3. 4.
print (arr.mean(axis=1)) #[1. 4.

5.7
7.]

51

IPython: office/Desktop

File Edit View Search Terminal Help
31

Axis Operations -- sum

import numpy as np
arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
print (arr) #[[0 1 2]

#[3 4 5]

#[6 7 8]]

print (arr.sum(0Q)) #/ 9 12 15]
print (arr.sum(1))#/ 3 12 21]
print (arr.cumsum(Q))#/[0 1 2]
#[3 5 7]
#[9 12 15]]
print (arr.cumprod(axis=1))#[[0 0] 0]

#[3 12 60]
#[6 42 336]]

Relational Operators and numpy

import numpy as np
X = np.arange(1, 9)
y = X>5
print(y)

[False False False False False True True True]

54

Where()

* Where(Condition, if True, if False)

v Returns numpy.ndarray array

v Use the name of the array to keep the values the
same

import numpy as np

arr = (np.random.random(16)).reshape(4, 4)
print(arr)

print (np.where(arr > 0.5, 2, -2))

[[0.11305372 0.41972489 0.71758276 0.7024291] [[-2 -2 2 2]
[0.28989595 0.71371535 0.58332619 0.69298548] [-2 2 2 2]
[0.48567377 0.00463536 0.57581238 0.27679739] [-2 -2 2 -2]
[0.36887073 0.35191625 0.77679602 0.40723983]1] [-2 -2 2 -2]]

55

Where() (cont.)

* Returns elements chosen from x or y depending
on the condition.

import numpy as np

X = [1,2,3]

y = [10, 20, 30]

condition = [True, False, True]
np.where(condition, x,y) #Output is [1 20 3]

56

Relational Operators and numpy --
with where

import numpy as np

X = np.arange(11, 19)

y = x>15

print(y)

print(np.where(y)) # returns tuple with indices and data type
print(np.where(y)[0]) # returns indices
print(x[np.where(y)[0]]) # returns values

#use np.nonzero(y)

[False False False False False True True True]
(array ([5, 6, 7], dtype=inté4),)

[5 6 7]

[16 17 18]

57

Boolean Arrays

import numpy as np
arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
print ((arr > 4).sum()) #4

arr = np.array([False, False, True, False])
print (arr.any()) #True
print (arr.all()) #False

58

Sorting

import numpy as np
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
arr.sort()
print (arr)#[[0 2 5]
#[1 4 6]
#[3 6 7]]
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
arr.sort(0) # column sort
print (arr))#[[0 4 1]
[6 5 2]
[6 7 3]]
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
arr.sort(1) # row sort
print (arr) #[[0 2 5]
[1 4 6]
[3 6 7]]

59

Unique

import numpy as np

names = np.array(['will’', 'Bob', 'Joe', 'Bob', 'will', 'Joe'])
print (np.unique(names)) #['Bob' 'Joe' "Will']

print (sorted(set(names)))#['Bob" '"Joe' 'Will']

60

numpy.inld

Test whether each element of a 1-D array is also present in a
second array.

v Returns a boolean array the same length as ar1 that is True where an
element of ar1 is in ar2 and False otherwise.
print(np.inld(aril,arZ2))
import numpy as np
arr = np.array([[0, 5, 2], [6, 4, 1], [6, 7, 3]])
print(np.inld([1,5],arr)) #[True True]
print(arr[np.inld([1,5],arr)]) #[True True]

arrl=np.array([11,21,13,14])
arr2=np.array([11,5,1,21,14])
print(np.where(np.inld(arrl,arr2)))
print(arril[np.where(np.inld(arrl,arr2))[0]])

(array([0, 1, 3], dtype=int64),)
[11 21 14]

Get Index
(argsort(),argwhere(),argmax())

Used when interested in the index of the
elements rather than value.

np.argmax() = Returns the indices of the
maximum values along an axis.

np.argsort() = Returns the indices that would
sort an array.

np.argwhere() — Find the indices of array
elements that are non-zero, grouped by element.

Get Index
(argsort(),argwhere(),argmax()) cont.

import numpy as np

X = np.array([3,6,12,5,3,77,67,43,23,50,77,11,24])
print(x)

print(np.argmax(x))

print(np.argsort(x))

print(np.argwhere(x>50))

[3 612 5 3776743235077 11 24]

5
[04311128127 9 6 510]

[[5]

[6]
[10]]

63

Save numpy Array

* np.save(): Saves an array to a binary file in
numpy .npy format

v Parameters: file name and numpy array.

* np.load(): loads an array from .npy file

import numpy as np

arr = np.arange(10)

print (arr)#/0 1 2 3 4 5 6 7 8 9]
np.save('some_array', arr)

arrl = np.load('some_array.npy')
print (arrl)#/0 1 2 3 4 5 6 7 8 9]

64

Saving Multiple numpy Arrays

import numpy as np

arr3 = np.arange(3)

arr5 = np.arange(5)

np.savez('array_archive.npz', a=arr3, b=arr5b)

arch = np.load('array_archive.npz')

print (type(arch))#<class 'numpy. lib.npyio.NpzFile'>
print (arch['a'])#[0 1 2]

print (arch['b'])#[0 1 2 3 4]

print (dict(arch))

#{'a': array([O0, 1, 2]), 'b': array([0, 1, 2, 3, 4])}

65

Loading Text Data into humpy
Array

import numpy as np
arrl = np.loadtxt('array_ex.txt', delimiter="',6")
print (arrl)#[[1. 2. 3. 4.]
#[12. 13. 14. 15.]]
print (type(arrl)) #<class 'numpy.ndarray'>

66

Loading Text Data into humpy

Array (cont.)

* Using genfromtxt: gives you some options like

data.

the parameters missing_values, filling_values
that can help you dealing with an incomplete

fill_values = (111, 222, 333, 444, 555) # one for each column
np.genfromtxt(filename,delimiter=",",filling_values=fill_values)

1121115
6II8II
11””

—

array([[1., 2., 333., 444., 5.],
[6., 222., 8., 444., 555.],
[11., 222., 333., 444., 555.]])

67

Scipy

* SciPy is a library that uses NumPy for more
mathematical functions.

* SciPy uses NumPy arrays as the basic data
structure.

* used tasks in scientific programming, including
linear algebra, integration (calculus), ordinary
differential equation solving, and signal processing.

* For a quick start on the functions check this
https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

Scipy

* SciPy is a library that uses NumPy for more
mathematical functions.

* SciPy uses NumPy arrays as the basic data
structure.

* used tasks in scientific programming, including
linear algebra, integration (calculus), ordinary
differential equation solving, and signal processing.

* For a quick start on the functions check this
https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

https://www.edureka.co/blog/scipy-tutorial/#numpyvsscipy

Comparison of NumPy vs SciPy

Efficient array operations and numerical

Primary Use computing Advanced scientific and technical computing
Builds On Core Python NumPy
Main Data Structure ndarray Uses ndarray from NumPy
Performance Very fast for numerical operations Also fast, relies on NumPy's performance
. . . Optimization, integration, stats, signal/image
Focus Areas Array manipulation, linear algebra, FFT processing
gl?tt)j;iliifages Fewer (e.g., numpy.linalg, numpy. fft) Many (e.g., scipy.optimize, scipy.stats)
Dependencies Minimal (pure Python + C) Depends on NumPy
Complex Operations Basic mathematical operations Advanced operations like ODE solving, optimization
Development Focus Foundation for numerical computing Higher-level scientific functionality

linalg

70

Linear Algebra
Numpy.linalg

* Available in scipy and numpy.

* Scipy version is more comprehensive and faster.
v Matrix and vector products.
v Decompositions.
v Matrix eigenvalues.
v Norms and other numbers.
v Solving equations and inverting matrices.
v Exceptions.
v Linear algebra on several matrices at once.

For more details:
https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf

https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf
https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf

References

* Numpy Documentation, http://Scipy.org
* Python for Data Analysis by Katia Oleinik.

http://scipy.org/

Computer Applications Lab
0907331
Lab Sheet 6: Numpy(Numerical Python)

A regional retail company wants to analyze its weekly product sales using Python and NumPy.
They have collected data for 5 products (A—E) sold during one week.
Each product’s sales data (for Monday—Sunday) is stored in a file called sales.txt.

However, some values in the file might be missing or inconsistent, so you must carefully read,
clean, and analyze the data using NumPy operations.

Later, you will add a new randomly generated product (F), and perform advanced data analytics
like slicing, conditional selection, sorting, and saving/loading arrays.

File Content (sales.txt):

Product Mon Tue Wed Thu Fri Sat Sun
25 30 28 35 40 38 45
10 12 15 11 13 14 16
50 45 55 60 65 58 062
5 7 6 8 10 9 12
20 18 22 25 30 28 27

0o QW

Step 1: Reading and Cleaning the Data

Read the file sales.txt using NumPy’s genfromtxt () function.
Handle any missing or invalid values by replacing them with zeros or a suitable default.

Then, separate the following:
e A list of days

e A list of product names
¢ A 2D NumPy array for sales values only

Expected Output:
Days: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
Products: ['A', 'B', 'C', 'D', 'E']

Sales Matrix:

[[25, 30, 28, 35, 40, 38, 457,
(10, 12, 15, 11, 13, 14, 161,
[50, 45, 55, 60, 65, 58, 621,
(5, 7, o, 8, 10, 9, 1271,

[20, 18, 22, 25, 30, 28, 27]]

Prepared by: Eng. Alaa Arabiyat Page 1 of 6

Step 2: Calculate Total Weekly Sales per Product
Compute the total sales for each product by summing across all days (axis=1).

Expected Output:

Total sales per product:
241
91
395
57
170

0o QW

Step 3: Find the Day with the Highest Total Sales

Sum across products (axis=0) to find the total per day.
Identify the day with the highest total sales.

Expected Output:

Day with highest total sales: Fri (158)

Step 4: Identify the Product with the Highest Average Sales

Find the mean (average) sales per product and determine which product performed best on
average.

Expected Output:

Product with highest average sales: C (56.43)

Step 5: Print a Formatted Sales Report
Display a neatly aligned sales report where products are rows and days are columns.

Expected Output:

Mon Tue Wed Thu Fri Sat Sun
25 30 28 35 40 38 45
10 12 15 11 13 14 16
50 45 55 60 65 58 62

5 7 6 38 10 9 12
20 18 22 25 30 28 27

Mmoo QW

Step 6: Analyze Minimum Sales per Product

Prepared by: Eng. Alaa Arabiyat Page 2 of 6

Find, for each product, the day with the lowest sales using NumPy functions like argmin ().

Expected Output:

Lowest sales per product:
A: Mon (25)

B: Mon (10)

C: Tue (45)

D: Mon (5)

E: Tue (18)

Step 7: Weekdays vs Weekends Sales Comparison
Compute total sales for:

¢ Weekdays (Mon—Fri)
¢ Weekends (Sat—Sun)

Compare which period generates higher revenue.

Expected Output:

Weekday total sales: 968
Weekend total sales: 187

Step 8: Add a New Product with Random Sales

Use np.random.randint () to generate random sales (between 10-60) for a new product F.
Append this data to the sales matrix.

Expected Output Example:

Random sales for product F: [34 12 50 25 41 39 55]
Updated Products: ['A', 'B', 'C', 'D', 'E', 'F']
Step 9: Indexing and Slicing Operations

Perform the following tasks using indexing and slicing:

(a) Extracting Data Slices

e Display sales for the first 3 products.
e Show only Mon—Wed columns.

Expected Output:

Prepared by: Eng. Alaa Arabiyat Page 3 of 6

Sales (Products A-C, Mon-Wed) :
[[25 30 28],

[10 12 15],

[50 45 55]]

(b) Axis Operations

¢ Find the max sale per product (axis=1).
¢ Find the max sale per day (axis=0).

Expected Output:

Max sale per product: [45 16 65 12 30 55]
Max sale per day: [50 45 55 60 65 58 62]

(c) Conditional Selection (np.where)

Use np.where () to identify sales below 15 and replace them with 15 (minimum acceptable
sales).

Expected Output:

Updated Sales Matrix (values <15 replaced with 15):
[[25 30 28 35 40 38 45]
[15 15 15 15 15 15 16]
[50 45 55 60 65 58 62]
[15 15 15 15 15 15 15]
[20 18 22 25 30 28 27]
[34 12 50 25 41 39 55]

(d) Fancy Indexing & Boolean Masking

e Select specific rows and columns using fancy indexing.
o Extract all sales > 35 using Boolean masking.

Expected Output:

Selected Products (B,

D, A):
[[15 15 15 15 15 15 16]
]
]

[15 15 15 15 15 15 15

[25 30 28 35 40 38 45]]

Sales greater than 35: [40 38 45 50 45 55 60 65 58 62 41 39 55]

Step 10: Sorting and Ranking

Prepared by: Eng. Alaa Arabiyat Page 4 of 6

Sort products by their total weekly sales using:

e np.sort () for sorting values
* np.argsort () for obtaining sorted indices

Expected Output:
Sorted totals: [57 91 170 241 395 256]

Products sorted by total sales: ['D', 'B', 'E', 'A', 'C', 'F']

Step 11: Locating Data Points
Use:

e np.argmax () to find the product with highest total sales
e np.argwhere () to locate all values equal to 60

Expected Output:

Product with highest total sales: C (index 2)
Sales equal to 60 found at positions: [[2 3]]

Step 12: Saving and Loading Arrays

Save multiple arrays (sales matrix, products, days) into a single file using np.savez ().
Then reload them and verify that the data matches.

Expected Output:

Arrays saved successfully to 'sales data.npz'
Loaded Products: ['A' 'B' 'C' 'D' 'E' 'F']
Loaded Sales Matrix shape: (6, 7)

Step 13: Exporting and Importing Text Data

Save the updated sales matrix to a text file using np.savetxt () and read it again with
np.loadtxt ().

Expected Output:

Data saved to 'clean sales.txt'
Data loaded successfully from file:
[[25. 30. 28. 35. 40. 38. 45.]

[15. 15. 15. 15. 15. 15. 16.]

[50. 45. 55. 60. 65. 58. 62.]

Prepared by: Eng. Alaa Arabiyat Page S of 6

[15. 15. 15. 15. 15. 15. 15.]
[20. 18. 22. 25. 30. 28. 27.]
[34. 12. 50. 25. 41. 39. 55.1]

Prepared by: Eng. Alaa Arabiyat Page 6 of 6

!l pandas

< N
©_9

Pandas

Prepared by
Dr Mohammad Abdel-Majeed and Modified by Dr Samah Rahamneh
(Converted to .odp and Modified by Dr Talal A. Edwan)

Data Science: is a branch of computer science where we study how to
store, use and analyze data for deriving information from it.

It is the use of scientific methods to obtain useful information from
computer data, especially large amounts of data.

Note: This version of the slides is not intended for printing due to the use of coloured content on a dark grey background.

Outline

Series and data frames (DataFrame)
Reading the data
Exploring the data
Indexing

Selection

Data Analysis
Grouping
Applying functions
Sorting

Missing values
Combining

Pandas

Adds data structures and tools designed to work with
table-like data.

Provides tools for data manipulation: reshaping,
merging, sorting, slicing, aggregation etc.

Clean messy data sets, and make them readable and
relevant.

Allows handling missing data.

The name "Pandas" has a reference to both

"Panel Data”. A term used in statistics for structured
datasets. Panel Data = panda + s = pandas.

Panel and Panel Data

Panel Collins Online Dictionary
(pzn’l 4) @)
Word forms: panels 49

1. countable noun [with singular or plural verb]

A panel is a small group of people who are chosen to do something, for example to discuss something in
public or to make a decision.

All the writers on the panel agreed Quinn's book should be singled out for special praise. E"g
The advisory panel disagreed with the decision. E"g

2. countable noun

A panelis a flat rectangular piece of wood or other material that forms part of a larger object such as a
door.

...the frosted glass panel set in the centre of the door. [&)
3. countable noun [noun NOUN]

A control panel or instrument panel is a board or surface which contains switches and controls to
operate a machine or piece of equipment.

The equipment was extremely sophisticated and was monitored from a central control-panel. [§
They had failed to recognise signs on their instrument panel indicating a serious problem. &

..

Panel Data

The term "panel data" refers to data being collected over time from the
same units (such as individuals, firms, or countries). The word "panel"
refers to a panel of respondents -- a fixed group of entities being
repeatedly surveyed or observed across multiple time periods.

Data collected from a unit over time.

Pandas Data Structures

* Series: one dimensional data structure(column)
that stores values — and for every value it holds
a unique index, too.

* DataFrame: two (or more) dimensional data
structure — basically a table with rows and
columns. The columns have names and the
rows have indexes.

import pandas as pd
pd.command(xxx)

Series

S = pd.Series([15,20,13,55,67,34,23,1]) 2 ;g
int (S

print (S) , 13
3 55
4 67
5 34

print (S[O0]) 15 6 23
7 1

With the index argument, you can name your own labels.

S = i0 15

pd.Series ([15,20,13,55,67,34,23,1],index=["1i0"," il 20

i1','i2','i3"','i4',"i5','i6",'i7"]) i2 13

print (S) i3 55
i4 67

print (S['10'71) 15 :?.5 34

print (S['1i5'17) 34 :_.6 23
i7 1

Series (cont.)

DataFrame

df = pd.DataFrame ({'Name':['Mohammad', 'Ahmad',6 'Haneen',6K 'Leen’'],

'Age':[12,25,40,171})

print (df) #shows the first 5 rows and the last 5 rows

print (df.to string()) #shows all the rows of the dataframe
Name Age

0 Mohammad 12

1 Ahmad 25

2 Haneen 40

3 Leen 17

DataFrame (cont.)

DataFrame with Index

df = pd.DataFrame ({'Name':['Mohammad', 'Ahmad',6 'Haneen',6 'Leen'],
'Age':[12,25,40,171},

index = ['Sl','SZ','S3','S4'])
print (df)
Name Age IPython: home/office
Sl MOhammad 1 2 File Edit View Search Terminal Help
s2 Ahmad 25
s3 Haneen 40
s4 Leen 17

11

Reading Data Files

'File Edit View Insert Format Styles Sheet Data Tools Window Help

B-E5-H- D@l XBhas 9D-

Liberation Sans * | 10pt *~ B I U~ A~ . E
L17 v | fx) =
Al B | ¢ | o | E | F | 6 |
1 |id component category | quantity = price | manufacturer is_in_stock
2 |1 CPU Hardware 50 299.99 Intel True
3|2 GPU Hardware 30 499.99 NVIDIA True
4 (3 55D 1TB Storage 100 89.99 Samsung True
5 |4 DDR4RAM 16GB Memary 75 59.99 Corsair True
6 [5 Motherboard Hardware 40 145.99 ASUS True
7 | 6 Power Supply 750W | Accessory 25 79.99 EVGA False
8 |7 Wi-Fi Card ACcessory 60 29.99 TP-Link True
9 |8 CPU Cooler Accessory 45 49.99 Cooler Master True
0189 HDD 2TB Storage 55 64.99 Seagate True
11 |10 RGB Case Fans | Accessory 90 19.99 Deepcoo| True
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T - =
-
- =
- . . .
- comma-separated values (CSV) file is a text file
data.csv that has a specific format which allows data to be

saved in a table structured format.

Reading Data Files (cont.)

-
-
-
-
o -
-
-

comma-separated values (CSV) file is a text file
data.csv that has a specific format which allows data to be
saved in a table structured format.

13

Reading Data Files (cont.)

* Several files types can be accessed and their
content will be stored in Series or DataFrame

import numpy as np

import pandas as pd

filename =r'C:\Users\user\Desktop\movies.xls'

movies = pd.read excel (filename) #reads the first sheet, xlrd
print (movies.shape) #(1604,19)

Note: you may need to install xlrd package to run the code

14

Reading Data Files (cont.)

* Several files types can be accessed and their
content will be stored in Series or DataFrame

import numpy as np
import pandas as pd
filename =r'C:\Users\user\Desktop\movies.xls'

movies = pd.read excel (filename, sheet name=1)#reads the second sheet, xlrd
print (movies.shape) #(1604,19)

Duration Pulse Maxpulse Calories

#to read .csv file type - 60 110 130 409.1
df = pd.read csv('data.csv') ' 6¢ 117 145 479.0

Print (df) 2 6€ 103 135 340.0

109 175 282.4

117 148 406.0

... 0r
ellipsis 105
means .

too many 110
rows/col. 115

120

125 15

Otherread *

v https://pandas.pydata.org/pandas-docs/stable/user guide/io.html

.
CSv

xls

Format Type Data Description Reader Writer

fext S read_csv to csv

fext Fixed-Width Text File read_fwf

fext JSOMN read_json to_json

fext HTML read_htm to_htm

fext Local clipboard read_clipboard to_clipboard
MS Exce read_swcel to_excel

binary OpenDocument read_excel

binary HDFS Format read_hdf to_hdf

binary Feather Format read_fezther to_fezther

binary Parquet Format read_parguet to_parguet

binary ORC Format read_ore

binary Msgpack read_msgpack to_msgpack

binary Stata read_stata to_stata

binary SAS read_szas

binary SP55 read_spss

binary Python Pickle Format read_pickle to_pickle

SOL SQL read_sql to_sql

16

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Exploring the Data

IPython: office/Desktop

File Edit View Search Terminal Help

* Data types.

23 df.pr

price prod() product()

Exploring the Data (cont.)

* Data types.

print (movies.dtypes)

print (movies.Country.dtype)
movies.Duration.astype ('int32"'") #
make sure that you do not have
NA values

Title

Year

Genres

Language

Country
Duration

Budget

Gross Earnings
Director

Actor 1

Actor 2

Facebook Likes -
Facebook Likes -
Facebook likes -

Actor 1
Actor 2
Movie

Facenumber in posters

User Votes
Reviews by Users

Reviews by Crtiics

IMDB Score

object
float64
object
object
object
float64
float64
float64
object
object
object
float64
float64
int64
float64
inté64
float64
float64
float64

18

Exploring the Data

filename =r'C:\Users\mohammad\Desktop\movies.xls'

movies = pd.read excel (filename) #reads the first sheet, xlrd
print (movies.shape)

print (movies.head (4))

Print (movies.tail ())# last five records

(1604, 109)

Title Year ... Reviews by Crtiics IMDB Score
0 127 Hours 2010.0 ... 450.0 7.6
1 3 Backyards 2010.0 ... 20.0 5.2
2 3 2010.0 ... 76.0 6.8
3 8: The Mormon Proposition 2010.0 ... 28.0 7.1

IMDB Score

s

Wolf Creek

Wuthering Heights

Yu-Gi-0Oh! Duel Monsters

19

Exploring the Data (cont.)

20

Exploring the Data (cont.)

import numpy as np

import pandas as pd

filename =r'C:\Users\mohammad\Desktop\movies.xls'

movies = pd.read excel (filename) #reads the first sheet, xlrd
print (movies.columns)# columns’ labels

Index(['Title', 'Year',6 'Genres', 'Language',6 'Country', 'Duration',6 'Budget',
'Gross Earnings', 'Director', 'Actor 1', 'Actor 2',
'Facebook Likes - Actor 1', 'Facebook Likes - Actor 2°',
'Facebook likes - Movie', 'Facenumber in posters', 'User Votes',
'Reviews by Users', 'Reviews by Crtiics', 'IMDB Score'],

dtype='object')

21

Exploring the Data/
Data Frames attributes

df.attribute description

dtypes list the types of the columns

columns list the column names

axes list the row labels and column names

ndim number of dimensions

size number of elements

shape return a tuple representing the dimensionality
values numpy representation of the data

22

Add Columns Titles

* By default the first row is considered the
columns headers.

* |n case there is no columns headers then you
read the data as follows:

movies = pd.read excel (filename, header=None)

* Create a list of the columns headers and
assign it to the columns variable of the data

frame.

» | movies.columns= list (range (19))

Can we remove the :
— \ 14 14 14
first statement? movies.columns = [‘coll’,’col2’..] »

Add Columns Titles

* By default the headers will be the integer
values starting from O.

* To add column headers you have to create a
list of the columns headers names and assign
it to the columns variable of the data frame.

movies.columns = [‘coll’,’col2’..]

Data Access/Column Access

* To access the data you can use the column
header as follows:

print (movies['Title'])
Print (movies.Title)

0 127 Hours
1 3 Backyards
2 3
3 8: The Mormon Proposition
4 A Turtle's Tale: Sammy's Adventures
1602 Wuthering Heights

1603 Yu-Gi-Oh! Duel Monsters

Name: Title, Length: 1604, dtype: object

25

Data Access/Column Access

* To access the data you can use the column
header as follows:

print (movies|[['Year', 'IMDB Score',]])

Year IMDB Score

0 2010.0 7.6

1 2010.0 5.2

2 2010.0 6.8

3 2010.0 7.1

4 2010.0 6.1

1600 NaN 7.3

‘a e’ I 1601 NaN 7.1
2 2 1602 NaN 7.7
.'. I 1603 NaN 7.0

ccess/Column Access
cont.

IPython: office/Desktop

File Edit View Search Terminal Help

Data Access/Column Access
(cont.)

28

Renaming Columns

To access columns you have to avoid spaces in
column name

df2 = pd.DataFrame([[1, 1, 1, 1],
(2, 2, 2, 211,
columns=['A 1','B 1','C1','D 1'])
print (df2)
df2.columns = [c.replace(' ', ' ') for c in df2.columns]
print (df2)

29

Indexing

* Works just like they do in the rest of the
Python ecosystem.

* Pandas has its own access operators,
viloc: index based selection.
v loc : label based selection.

Index Based Selection
(iloc)

print (movies.iloc[b]) #returns row 5

print (movies.iloc[:5]) #returns row 0,1,2,3,4

print (movies.iloc[:5,0]) #returns titles (column (0) of the
first 5 moviess

print (movies.iloc[[0,1,2,3,41,0]) #returns titles
(column(0) of the first 5 movies

print (movies.iloc[[0,1,2,3,4]1,18]) #returns IMDB scores
(column 18) of the first 5 movies

:D
:D

31

Label Based Selection
(loc)

When using loc the indexing is inclusive.
v’ The start and end are included.

movies = pd.read excel (filename) #reads the first
sheet, xlrd

print (movies.loc[5]) #returns row 5
print (movies.loc([:5]) #returns row 0,1,2,3,4,5

print (movies.loc[:5, 'Title']) #returns titles of the
first 6 movies

print (movies.loc[[0,1,2,3,4], 'IMDB Score']) #returns
IMDB Scores of the first 5 movies

print (movies.loc[-5:, '"IMDB Score']) #returns IMDB
Scores of the last 5 movies

print (movies.loc[-5:, ['IMDB Score',6 'Title']]) #returns

IMDB Scores and titles of the last 5 movies

32

set index()

* An Index column will be added to the
dataframe by default

— The range is from O #of rows -1

* set_index() can be used to set any of the
columns values to be used as a row index
— Duplicates are allowed

inplace True Optional, default False. If True: the operation is done on the current
False DataFrame. If False: returns a copy where the operation is done.

set index()

df = pd.DataFrame ({'Name': ['Mohammad',
'Mohammad', 'Haneen', 'Leen'],
'Age':[12,25,40,17],

'"Hobby': ['Soccer', 'Singing', 'Reading’,

X = df.set index('Age')

print (X)

df.set index('Name', inplace=True)
print (df)

print (df.loc['Mohammad'])

'Reading'] })

Age
12
25
40
17

Hobby Name Age Hobby
Name

Soccer Mohammad Mohammad 12 Soccer

Singing Mohammad Mohammad 25 Singing

Reading Haneen Haneen 40 Reading

Reading Leen Leen 17 Reading

Age Hobby
Name
Mohammad 12 Soccer
Mohammad 25 Singing

34

Selection

* Several Techniques can be used to select
certain elements,
v Relational Operators >,<,>=....
visin().
v notnull(), isnull().

Selection/Examples

print (movies.loc[movies.Country== 'Spain']) #all rows with country=Spain
print (movies[movies.Country== 'Spain'])
print (movies|[(movies|['Country']== 'Spain') & (movies['Reviews by

Users']>400)1])

print (movies|[(movies|['Year']== 2012) | (movies|['Year']==2011)1])
print (movies[movies.Year.isin ([[2011,2012]1])
print (movies.loc[movies.Year.isin([[2011,2012]])

print (movies.loc[movies.Budget.notnull()])
print (movies.loc[movies.Budget.isnull ()])

36

Assigning Data

* Assignment operator is used.
v Broadcasting is supported.

movies.loc[3, 'Budget'] = 1500# make budget at row 3 =1500
movies['Title']= 'New Title' #make all data on Title column
='New Title”

movies.loc[:5, 'Title'] = 'New'# make the first 6 rows of the
Title column = ‘New’

movies.head (5) .Year= 2000# .head() 1is used to show data only
print (movies.head (10))

37

Data Analysis
describe()

* Generates a high-level summary of the
attributes of the given column.

v It is type-aware, meaning that its output changes
based on the data type of the input.

v For numeric data, the result’s index will include
count, mean, std, min, max and 25, 50 and 75
percentiles.

v For object data (e.g., strings or timestamps), the
result’s index will include count, unique, top, and
freq.

Data Analysis
describe()

* For mixed data types provided via a
DataFrame, the default is to return only an

analysis of numeric columns.

print (movies.describe ())

Year
count
mean
std
min
25%
50%
75%
max

Duration

1497.
2012.

1.
2010.

2011

2016

000000
773547
868725
000000

.000000
2013.
2014.
.000000

000000
000000

1594.
103.
27.
.000000
92.
102.
.750000
511.

7

114

Reviews by Crtiics

000000
328733
429001

000000
000000

000000

IMDB Score

1571
187

165.

1
38

288
813

000000
586887
281572

.000000
.000000
159.

000000

.000000
.000000

1604

OJdJdoUOT R B O

.000000
.337718
.169382
.600000
.700000
.400000
.100000
.500000

39

Data Analysis
describe()

* Numerical Fields

print
print
print
print

(movies.Duration.describe())

(type (movies.Duration.describe()))
(movies.Duration.describe () ['max'])
(movies.Duration.describe () .loc['max"'])

count 1594.000000

mean 103.328733
std 27.429001
min 7.000000
25% 92.000000
50% 102.000000
75% 114.750000
max 511.000000

Name: Duration, dtype: floaté64
<class 'pandas.core.series.Series'>
511.0

511.0

40

Data Analysis/Summary

* String Fields

describe()

Victor Frankenstein
Victor Frankenstein
Victor Frankenstein

print (movies.Title.describe())
print (movies.Title.describe () .top)
print (movies.Title.describe () ['top'])
print (movies.Title.describe () .loc['top'])
count 1604
unique 1551
top Victor Frankenstein
freq 3
Name: Title, dtype: object

41

Data Analysis/Basic Statistics

print (movies.describe())

print (movies.describe () .loc['max', 'Budget'])
print (movies.Budget.max ())
(
(

print (movies.Budget.mean ())

print (movies.Budget.mode ()) #most frequently data
print (movies.Duration.mean () .round())
movies.Duration += 15#Broadcasting

print (movies.Duration.mean () .round())

Year Duration ... Reviews by Crtiics IMDB Score
count 1497.000000 1594.000000 ... 1571.000000 1604.000000
mean 2012.773547 103.328733 ... 187.586887 6.337718
std 1.868725 27.429001 ... 165.281572 1.169382
min 2010.000000 7.000000 ... 1.000000 1.600000
25% 2011.000000 92.000000 ... 38.000000 5.700000
50% 2013.000000 102.000000 ... 159.000000 6.400000
75% 2014.000000 114.750000 ... 288.000000 7.100000
max 2016.000000 511.000000 ... 813.000000 9.500000

600000000.0
600000000.0
40563243.28888889
0 20000000.0
dtype: floaté64
103.0

118.0

Data Analysis/Summary

Aggregation

* agg() method are useful when multiple
statistics are computed per column:

print (movies|[['Budget', 'IMDB Score']].agg([len,min,max]))
print (movies|[['Budget', 'IMDB Score']l].agg([len,min,max]).loc['max', 'Budget'])
Budget IMDB Score
len 1604.0 1604.0
min 1400.0 1.6
max 600000000.0 9.5
600000000.0

43

Data Analysis/Summary

describe()

print (movies.Year.unique ())

print (movies.Year.value counts())

print (movies.Year.value counts () [2012])

[2010. 2011. 2012. 2013.

2014.
2014.
2013.
2010.
2015.
2011.
2012.
2016.
Name:

221

O OO0 O0OO0o0OOo

2015. 201e6.

252
237
230
226
225
221
106

Year, dtype:

nan]

inté64

44

Grouping

* groupby() method is used to group the rows in the
dataframe based on certain column(s) values.

v movies.groupby(['Country']) = groups the rows
based on the Country

> Number of groups will be equal to the number
of countries.

v We can perform operations on each group.

Grouping

grouped = movies.groupby ('Country')
print (grouped.groups) #shows indices
print (grouped.get group ('Spain'))

{'Australia': [16, 54, 65, 194, 294, 360, 473, 692, 859, 860, 880, 1014, 1120, 1138,
1269, 1319, 1514, 1601], 'Bahamas': [978], 'Belgium': [399, 895, 1348, 1349],

'Brazil': [804, 992, 1359], 'Bulgaria': [942], 'Cambodia': [1033],
'Canada': [13, 17, 26, 68, 78, 140, 143, 216, 255, 290, 300, 350, 450, 467, 492, 504, 526,..
Title Year ... Reviews by Crtiics IMDB Score

23 Buried 2010.0 363.0 7.0
258 Blackthorn 2011.0 92.0 6.6
334 Midnight in Paris 2011.0 487.0 7.7
375 Sleep Tight 2011.0 191.0 7.2
430 There Be Dragons 2011.0 77.0 5.9
571 Red Lights 2012.0 195.0 6.2
631 The Impossible 2012.0 371.0 7.6
902 Underdogs 2013.0 82.0 6.7
927 Aloft 2014.0 56.0 5.3
1006 Hidden Away 2014.0 9.0 7.2
1225 Eden 2015.0 5.0 4.8
1295 Regression 2015.0 140.0 5.7

[12 rows x 19 columns]

Grouping

Example: Find the budget spent by each country on movies
production

print (movies.groupby (['Country']) .Budget.sum() .head(5))

Country

Australia 751500000.0
Bahamas 5000000.0
Belgium 49000000.0
Brazil 11000000.0
Bulgaria 7000000.0
Name: Budget, dtype: floatb64

47

Grouping

Example: Find the number of movies produced by each country

print (movies.groupby (['Country']) .Title.count () .sort values())
print (movies.groupby (['Country']) .Title.count (). sort values () .max())
var=movies.groupby (['Country']) .Title.count () .sort values()

print (var.index[var.shape[0]-11])

print (movies['Country'] .describe () .top)
Country
United Arab Emirates 1
Iran 1
Canada 44
France 54
UK 136
USA 1184
Name: Title, dtype: int64
1184
USA
USA

48

Grouping and Aggregation

* Use agg() to display more than one function
per group
v Results generated per group

print (movies.groupby (['Country']) .Budget.agg([len,min, max]))
len min max
Country
Australia 18.0 2500000.0 150000000.0
Bahamas 1.0 5000000.0 5000000.0
Belgium 4.0 15000000.0 34000000.0

49

Grouping

* Notice that the result has new index and in this case multi-
index.

print (movies.groupby (['Country', 'Language']) .Budget.agg([len,min,max]))
var=movies.groupby (['Country', 'Language']) .Budget.agg([len,min, max])
print (var.loc['Brazil', 'max'])

print (var.loc['Brazil', 'max'].loc['English'])

len min max
Country Language
Australia English 18 2500000.0 150000000.0
Bahamas English 1 5000000.0 5000000.0
Belgium English 4 15000000.0 34000000.0
Brazil English 1 3000000.0 3000000.0
Portuguese 2 4000000.0 4000000.0
USA English 1174 1400.0 263700000.0
Hebrew 1 NaN NaN
None 1 4000000.0 4000000.0
Spanish 3 1200000.0 6000000.0
United Arab Emirates Arabic 1 125000.0 125000.0
[83 rows x 3 columns]
Language
English 3000000.0
Portuguese 4000000.0
Name: max, dtype: float64
3000000.0

50

DataFrameGroupBYy.filter()

* Return a copy of a DataFrame excluding elements from groups
that do not satisfy the boolean criterion specified by function.

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
'foo', 'bar'],
'B' : [1, 2, 3, 4, 5, o1,
'c'" : [2.0, 5., 8., 1., 2., 9.1}

grouped = df.groupby('A'")

print (grouped.
print (grouped.
print (grouped.
print (grouped.
print (grouped.

get group('bar'))

)
get group('bar')['B'].mean())
get group('foo'))
get group('foo')['B'].mean())
filter(lambda x: x['B'].mean() > 3.))

w

5

SO W

w & N O

A B
bar
bar
bar

foo
foo
foo

bar
bar
bar

oY

o w W

o N W

o O O N

O O O N

o O

51

DataFrameGroupBy.apply()

* Apply certain function on the group elements

grouped = df.groupby ('A'")
print (grouped.apply (lambda x:x.describe()))

B
A
bar

foo

count
mean
std
min
25%
50%
75%
max
count
mean
std
min
25%
50%
75%
max

Q

O WNEDMNMNWWSYUUBB WDNDDNDMAMW

O OO0 00000000000 OO

UMD MNDMNDMNMNWABWONOUOOWERENO W

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.464102
.000000
.000000
.000000
.000000
.000000

52

DataFrameGroupBy.apply()
(cont.)

Mean of B for bar = (2+4+6)/3 = 4
Mean of C for bar = (5+1+9)/3 =5

DataFrameGroupBy.apply()
(cont.)

def f (group):
return pd.DataFrame ({'original': group,
'"demeaned': group - group.mean() })

grouped = df.groupby ('A'")
print (grouped['C'].apply(£f)) original demeaned

2.0 -2.0

5.0 .0

8.0 4.0

.0 4.0
2.0 -2.0
9.0 4.0

Groupby()

* reset_index() can be used to reset the index to

decimal values starting from O.

print (movies.groupby (['Country', 'Language']) .Budget

.agg([len,min, max]))

Country
Australia
Bahamas
Belgium
Brazil

UsSA

United Arab Emirates

[83 rows x 3 columns]

len
Language
English 18
English 1
English 4
English 1
Portuguese 2
English 1174
Hebrew 1
None 1
Spanish 3
Arabic 1

min

2500000.0
5000000.0
.0
0
0

15000000

3000000.
4000000.

1400.

0

NaN

4000000.
1200000.
125000.

0
0
0

max

150000000.
5000000.
34000000.
3000000.
4000000.

O O O oo

263700000.0
NaN
4000000.0
6000000.0
125000.0

55

Groupby()

print (movies.groupby (['Country', 'Language']) .Budget.agg([len,min,max]) .reset index())

Country Language len min max
0 Australia English 18 2500000.0 150000000.0
1 Bahamas English 1 5000000.0 5000000.0
2 Belgium English 4 15000000.0 34000000.0
3 Brazil English 1 3000000.0 3000000.0
4 Brazil Portuguese 2 4000000.0 4000000.0
78 USA English 1174 1400.0 263700000.0
79 UsaA Hebrew 1 NaN NaN
80 Usa None 1 4000000.0 4000000.0
81 USA Spanish 3 1200000.0 6000000.0
82 United Arab Emirates Arabic 1 125000.0 125000.0
[83 rows x 5 columns]

56

Groupby() (cont.

data_2.csv - Libre Office Cale

File Edit View Insert Format Styles Sheet Data Tools Window Help

-E-H-DelB XBE- a4 A

Ld th & Q-8L10

@l

Liberation Sans - 10pt * B I U~ Av . = = - % 00 7 on 02 ==
A1 w fy 7, v = Country
B | c | D E | F | G | H I | J | K L M N o | P | Q | R
L Country __ |language Budget
2 |Australia English 2500000 office/Desktop
_ 3 |Australia English 150000000 File . Tt ek
_ 4 |Australia English 10000000 : :
_ 5 |Australia English 5000000
6 |Australia English 20000000
_ 7 |Australia English 30000000
_ 8 |Australia English 8000000
_ 9 |Australia English 12000000
10 |Australia English 7000000
_11 |Australia English 25000000
_12 |Australia English 4000000
13 |Australia English 6000000
_ 14 |Australia English 9000000
_15 |Australia English 35000000
_ 16 |Australia English 45000000
_17 |Australia English 55000000
_18 |Australia English 65000000
_19 |Australia English 75000000
_20 |Bahamas English 5000000
_21 |Belgium English 15000000
_ 22 |Belgium English 20000000
23 |Belgium English 34000000
_ 24 |Belgium English 25000000
_25 |Brazil English 3000000
_ 26 |Brazil Portuguese 4000000
_27 |Brazil Portuguese | 4000000
28 |USA English 1400
_ 29 |USA English 1000000
30 |usA English 5000000
_31 |USA English 20000000
_32 |USA English 263700000
33 |usA Hebrew
34 |usA None 4000000
35 |USA Spanish 1200000
36 |USA Spanish 6000000
_37 |usA Spanish 3000000
_ 38 |United Arab Emirates Arabic 125000
39
40

57

Groupby() (cont.

data_2.csv - LibreOffice Cale

File Edit View Insert Format Styles Sheet Data Tools Window Help

‘EH-B-0@l XBR a4

A EWihE Q-2 0

ho)

o

7

A
4

e E
a4

&

.] = e = = = - — 5
Liberation Sans v || 10pt *+ B I U-~ i"@ C E == 5 :i = (g ~ 9% 00 OQ OQ »= Qv v _}q]— q!; h Jﬂ
R34 v fr~=

A | B | c | D E | F | 6 | W [1 | J | k | ¢ | m | N | o | P | o [N

_ 1 |Country Language Budget

_ 2 |Australia English 2500000

i:ﬂ:gz::: E:g:::: 110000000 File Edit V Terminal Help

_ 5 |Australia English 5000000

_ 6 |Australia English 20000000

_ T |Australia English 30000000

_ 8 |Australia English 8000000

_ 9 |Australia English 12000000

_10 |Australia English 7000000

_11 |Australia English 25000000

_12 |Australia English 4000000

_13 |Australia English 6000000

14 |Australia English 9000000

_15 |Australia English 35000000

_ 16 |Australia English 45000000

_17 |Australia English 55000000

_18 |Australia English 65000000

19 |Australia English 75000000

_ 20 |Bahamas English 5000000

_21 |Belgium English 15000000

22 |Belgium English 20000000

_23 |Belgium English 34000000

_ 24 |Belgium English 25000000

_25 |Brazil English 3000000

_ 26 |Brazil Portuguese 4000000

_ 27 |Brazil Portuguese 4000000

_28 |USA English 1400

_29 |USA English 1000000

30 |USA English 5000000

_31 |UsA English 20000000

_32 |usA English 263700000
33 |USA Hebrew

Elusa None 4000000

_ 35 |UsA Spanish 1200000

36 |USA Spanish 6000000

_37 |UsA Spanish 3000000

_38 |United Arab Emirates | Arabic 125000

39 |

40 |

58

Groupby() (cont.)

IPython: office/Desktop

File Edit WView Search Terminal Help

59

Groupby() (cont.)

Groupby()

print (movies.groupby (['Country', 'Language']) .Budget.agg([len,min,max]) .reset
_index () .iloc[3])

print (movies.groupby (['Country', 'Language']) .Budget.agg([len,min,max]) .reset
_index () .iloc[3]['max'])

IPython: office/Desktop

File Edit View Search Terminal Help Country Brazil
Language English
len 1
min 3000000.0
max 3000000.0

Name: 3, dtype: object
3000000.0

61

Sorting

* sort_values() function/method can be used to
sort dataframes according to certain column
values.

print (movies.sort values ('Country') .iloc[:, :5]) #sort all the
dataframe by the column Country, and display the first 5 columns

Title Year ... Language Country
The Water Diviner 2014.0 ... English
English

The Great Gatshy .0 ... English

Beneath Hill 60 2010.8 ... English
The Railway Man .0 ... English Australia

The Brain That Sings 2013.0 ... Arabic United Arab Emirates

Dawn Patrol 3 ... English NaN

10,000 B.C. cas Nal VEL
Gone, Baby, Gone ... English NaN
Preacher ... English VEL

[1604 rows x 5 columns]

62

Sorting

print (movies.groupby (['Country']) ['IMDB Score'].max())

print (movies.groupby (['Country']) ['IMDB Score'].max().sort values (ascending=False))

print (movies.groupby (['Country']) ['IMDB Score'].agg([max]).sort values('max', ascending=False))
Country Country
Australia 8.1 Canada 9.5
Bahamas 4.4 USA 9.1
Belgium 7.1 Poland 9.1
Thailand 5.7 5.6
UK 8.6 Nigeria 5.6
USA 9.1 Georgia 5.6
United Arab Emirates 8.2 Bahamas 4.4
Name: IMDB Score, dtype: Name: IMDB Score, dtype:
floatoe4 floato4

63

Sorting (cont.)

* sort_values() works on Dataframes or Series
objects

print (type (movies.groupby (['Country'])))
<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

print (type (movies.groupby (['Country']) ['IMDB Score']))
<class 'pandas.core.groupby.generic.SeriesGroupBy'>

print (type (movies.groupby (['Country']) ['IMDB Score'].max()))
<class 'pandas.core.series.Series'>

64

Sorting

* sort_values() can sort by more than one column.
* sort_index() is used to sort elements by index.

print (movies.sort values (['Language', 'Country']).iloc[:,:5])
print (movies.sort values (['Language', 'Country']) .loc
[:,['Title', 'Language', 'Country']].to string())

Title ... Country
884 The Square .. Egypt
845 The Brain That Sings ... United Arab Emirates
308 In the Land of Blood and Honey .. UsSA
1026 Kung Fu Killer e China
1164 Z Storm e Hong K

65

Missing Data

* Several Methods are available to deal with
missing data

print (movies[pd.isnull (movies.Country)])

Title Year ... Reviews by Crtiics IMDB Score
963 Dawn Patrol 2014.0 ... 9.0 4.8
1497 10,000 B.C. NaN ... NaN 7.2
1529 Gone, Baby, Gone NaN ... NaN 6.6

1551 Preacher NaN ... 18.0 8.3

Missing Data (cont.)

df.method() description
dropna() Drop missing observations
dropna(how="all') Drop observations where all cells is NA

dropna(axis=1, how="all') Drop column if all the values are missing

dropna(thresh = 5) Drop rows that contain less than 5 non-missing values
fillna(0) Replace missing values with zeros
isnull() returns True if the value is missing

notnull() Returns True for non-missing values

67

Missing Data

* To select NaN entries you can use pd.isnull()
(or its companion pd.notnull()).

print (movies[pd.isnull (movies.Country)])

Title Year ce Reviews by Crtiics IMDB
963 Dawn Patrol 2014.0 ... 9.0 4.8
1497 10,000 B.C. NaN .. NaN 7.2
1529 Gone, Baby, Gone NaN ... NaN 6.6
1551 Preacher NaN ... 18.0 8.3

Missing Data

* To select NaN entries you can use pd.isnull()
(or its companion pd.notnull()).

[5 rows x 19 columns]

movies[movies.isnull () .any(axis=1)] .head()
Title ... IMDB Score
1 3 Backyards 5.2
2 3 6.8
4 A Turtle's Tale: Sammy's Adventures 6.1
7 All Good Things 6.3
10 Anderson's Cross 7.2

69

Replacing Missing Values

* Replacing missing values is a common operation.
* fillna() provides a few different strategies for mitigating such

data

Title Dawn Patrol
Year 2014.0
Genres Drama |Thriller
Language English
movies.Country = movies.Country.fillna ("X") Country X
print (movies.iloc[963]) Duration 88.0
Budget 3500000.0
movies.Country.fillna ("X",inplace = True) Gross Earnings NaN
print (movies.iloc[963]) Director Daniel Petrie Jr.
Actor 1 Chris Brochu
Actor 2 Jeff Fahey
Facebook Likes - Actor 1 795.0
Facebook Likes - Actor 2 535.0
Facebook likes - Movie 570
Facenumber in posters 0.0
User Votes 455
Reviews by Users 13.0
Reviews by Crtiics 9.0
IMDB Score 4.8
Name: 963, dtype: object
Process finished with exit code 0

70

Replacing Missing Values

movies.fillna (“Y",inplace

print (movies.iloc[4])

Title
Year
Genres
Language
Country
Duration
Budget
Gross Earnings
Director
Actor 1
Actor 2

A Turtle's Tale:

Sammy's Adventures

2010.0

Adventure|Animation|Family

Facebook Likes - Actor 1
Facebook Likes - Actor 2
Facebook likes - Movie
Facenumber in posters

User Votes
Reviews by Users

Reviews by Crtiics

IMDB Score
Name: 4, dtype:

object

English
France
88.0
Y
Y
Ben Stassen
Ed Begley Jr.
Jenny McCarthy
783.0
749.0
0
2.0
5385
22.0
56.0
6.1

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.

fillna.html

71

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html

Removing Records with Missing Values

* dropna() can be used to remove all the rows
with ‘NA’ values.

print (movies.shape) # (1604, 19)
movies.dropna (inplace=True)
print (movies.shape) # (1044, 19)

fillna()/Examples

0
df = pd.DataFrame([[np.nan, 2, np.nan, 0], 1
[3, 4, np.nan, 1], 2
[np.nan, np.nan, np.nan, 5], 3
[np.nan, 3, np.nan, 4]],
columns=1ist ('"ABCD'))
print (df) 0
dfl = df.fillna(method="££ill") 1
print (dfl) 2
3
values = {'A': O, 'B': 1, 'C': 2, 'D': 3}
df2 = df.fillna(value=values)
print (df2)

WwhMNhEHEO

NaN
3.0
NaN
NaN

NaN

www
o O O

oo wo
cooolWy

NaN

W be &N

Oooow

WkE &N

Oooow

NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN

NMNMNDMNDDN

O OO0 N

D OOk OO0

D OOk OO0

» 0Ok OO0

73

Renaming

* |ets you change index names and/or column
names

* Change column name

movies.rename (columns={'IMDB Score':'IMDB Score'},inplace=True)

* Change index
v Rarely used; set_index() can be used instead

movies.rename (index = {O:"'m0',1:"'ml'})

74

Combining

* Dataframes can be combined into one
Dataframe

v concat(), join() and merge() are useful methods for
this purpose.

Combining/Example

dfl

df2

df4

= pd.DataFrame([[1, 2, 5, 0],
[31 4/ 6/ 1]:|l
columns=1ist ('ABCD'))

= pd.DataFrame([[1, 1, 1, 1],
(2, 2, 2, 211,
columns=1ist ('ABCD'))

= pd.DataFrame([[1, 1, 1, 1],
(2, 2, 2, 211,
columns=1ist ('ABCFEF'))

76

Combining/concat()

* Concatenate along an axis.

df3 = pd.concat ([dfl,df2],ignore index=True)
print (df3)

df3 = pd.concat ([dfl,df2],axis=1)

print (df3)
A B C D
O 1 2 5 O
1 3 4 6 1
2 1 1 1 1
3 2 2 2 2
A B C D A B C D
o 1 2 5 O 1 1 1 1
1 3 4 6 1 2 2 2 2

Combining/concat()
(cont.)

* Concatenate with different columns labels.

print (df3)

df3 = pd.concat ([dfl,df4],sort=False, ignore index=True)

wWwMNhEFEO

NRFRWR

NER&ADN

N R oy On

R oU
o O

NaN
NaN

NaN
NaN
1.0
2.0

78

Combining/join()

* Concatenate with different columns labels

df3 = dfl.join(df4,lsuffix=" X", rsuffix="_¥")
print (df3)

References

https://pandas.pydata.org/docs/

https://pandas.pydata.org/pandas docs/stable/user guide/groupby.html

pandas 14,1/ 4

80

https://pandas.pydata.org/docs/
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html

Computer Applications Lab
0907331
LabSheet 7: Pandas

Answer the following questions using the movies dataset. The dataset is available on MS Teams under:
Files -+ Labsheets - Labsheet7.

Notes:

e To read Excel files, you must install the x1rd package in PyCharm.

e Some questions may require searching for new methods not covered in the lab slides.

Task 1

—_

N N A R

—
e

—_
—_

12.

13.
14.

Find the median and standard deviation of the Reviews by Users.

Find the minimum number of Facebook Likes - Actor 1 for each language.

List all Mexican movies that are in the Spanish language.

List the name of the Director and the Country for the movie "Green Zone".

Find the number of movies for each Actor 2.

Find the year with the highest number of movie releases.

Find the average IMDB score and total budget for movies in the Comedy | Drama|Romance genre.
Find the percentage of movies that have a one-word title.

List all Comedy/Family movies.

Remove the columns Facebook Likes - Actor 1 and Facebook Likes - Actor 2 (use the drop
method).

. Replace missing values in the Budget column with the average budget, and missing values in the

IMDB Score column with the maximum IMDB score.

Add a new column Reviews to the data frame as the sum of Reviews by Users and Reviews by
Critics.

Rename the column IMDB Score to Norm10_IMDB and divide all values in this column by 10.

Write the modified data frame to an Excel file named movies_updated.xls. Ensure all updates
from questions 10 to 13 are reflected in the saved file.

1

Task 2

e The Excel files grades.x1ls and answer_details.xls contain exam data for a specific course.

e The exam was conducted in two sessions: Session_A and Session_B. Normally, a student may only
take the exam in one session.

e The file grades.x1s contains the student ID and their grade in the respective session. A dash (-)
indicates that the student did not take the exam in that session.

e The file answer_details_session_a.xls contains each student’s total grade and their answers to
individual questions labelled Q1, Q2, etc. A dash ("-") indicates a question was not answered.

Based on the above, answer the following:
1. What are the IDs of students who answered all questions in Session A?
2. How many students scored more than 20 in both sessions and have an ID starting with 18xxxx?
3. How many students in Session B did not answer Q8 and Q9 correctly?

4. Some students experienced technical issues during the exam and could not answer all questions.
Others did not take the exam at all. Create a Makeup Exam List of students who either:

e Did not take the exam, or

e Answered fewer than six questions.

Data Visualisation using Matplotlib

Prepared by
Dr Mohammad Abdel-Majeed
(Converted to .odp and Modified by Dr Talal A. Edwan)

Note: This version of the slides is not intended for printing due to the use of coloured content on a dark grey background.

Outline

* Data Visualisation

* Matplotlib.pyplot
v Line plot
v Bar Plot
v/ Scatter Plot
v Histogram Plot
v Pie Plot
v SubPlot
v Annotation
v Writing mathematical expressions
v Image tutorial

* Seaborn

Data Visualisation

* Human brain Process information faster when
it is in graphical form.

* Accessible way to see and understand trends,
outliers, and patterns in data.

* Data visualisation tools are essential to
analyse and interpret massive amounts of
information to make data-driven decisions.

Data Visualisation (cont.)

visualise

+ O
/v + ¥ \

transform ﬁ Finding Insights analyse,

dataset ﬂ In Data / interpret

.

\‘6'.-

document
insights

https://datajournalism.com/read/handbook/one/understanding-data/using-data-visualization-to-find-insights-in-data

https://datajournalism.com/read/handbook/one/understanding-data/using-data-visualization-to-find-insights-in-data
https://datajournalism.com/read/handbook/one/understanding-data/using-data-visualization-to-find-insights-in-data

Matplotlib.pyplot

* Collection of command style functions that
make matplotlib work like MATLAB.

* Various states are preserved across function
calls, so that it keeps track of things like:
v’ The current figure and plotting area.

v The plotting functions are directed to the current
axes.

Examples

3

llllllw .

AN

Examples

https://matplotlib.org/tutorials/introductory/sample plots.html
https://matplotlib.org/3.2.1/gallery/index.html

https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html
(Detailed Examples).

1. Introduction to Matplotlib. .

<@ o
2. Creating basic 2D plots. Pyt?on 3

- or
Engineers

https://lyoutu.be/PPvAmpilm4k?feature=shared <

3. Creating basic 3D surface plots.

T

Dr Talal A. Edwan

https://lyoutu.be/zV2gJyDqR5U?feature=shared

https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.2.1/gallery/index.html
https://matplotlib.org/3.2.1/gallery/index.html
https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html
https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html
https://youtu.be/PPvAmpilm4k?feature=shared
https://youtu.be/zV2gJyDqR5U?feature=shared

some numbers

Line Plot

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel ('some numbers')
plt.show()

4.0

3.5

3.0

1.5 1

1.0

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Line Plot (cont.)

plt.
plt.
plt.
plt.

15.0 ~

12.5 A

10.0 A

7.5 1

5.0

2.5

0.0

Line Plot (cont.)

evenly sampled time at 200ms intervals

t = np.arange (0., 5., 0.2)

red dashes, blue squares and green triangles

plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'gA')
plt.show ()
A
100 4 .
A
80
A
A
60 1
A
A
7 A
A
20 1 N -
A an
|]
-p-a .-I-.i-‘.i_...-!_..._.__. _______________
SN & of | -

T T T T T
0 1 2 3 4

10

Line Plot (cont.)

import numpy as np
evenly sampled time at 200ms intervals
t = np.arange (0., 5., 0.2)

red dashes, blue squares and green triangles

plt.plot(t, t, 'r--',label='F1l")
plt.plot(t, t**2,'bs',label="F2")
plt.plot(t, t**3, 'g*',label="'F3")
plt.axis([0,7,0,150])

plt.legend()

plt.show ()

import numpy as np

t = np.arange(0., 5., 0.2)
plt.plot(t, t, 'r-")
plt.plot(t, t**2, 'bs'")
plt.plot (t, t**3, 'g*')
plt.axis([0,7,0,150])
plt.legend(['F1', 'F2', 'F3'])
plt.show ()

11

Line Plot (cont.

--- F1
m P2
A F3

140
120 4
100 4
80 -
60
40 - A

- A u
20 gu®®

Bar Plot

labels = ['Gl', 'G2', 'G3', 'G4', 'G5']
men means [20, 35, 30, 35, 27]

men std = [2, 3, 4, 1, 2]

width = 0.35 # the width of the bars: can also be len(x)
sequence

fig, ax = plt.subplots{()

ax.bar (labels, men means, width, yerr=men std, label='Men')
ax.set ylabel ('Scores')

ax.set title('Men Scores')

plt.show ()

13

Bar Plots (cont.)

Scores by group and gender

B Men

Gl G2 G3 G4 G5

14

Bar Plot (cont.)

labels = ['Gl', 'G2', 'G3', 'G4', 'G5']
men means = [20, 35, 30, 35, 27]

women means = [25, 32, 34, 20, 25]

men std = [2, 3, 4, 1, 2]

women std = [3, 5, 2, 3, 3]

width = 0.35
fig, ax = plt.subplots|()

ax.bar (labels, men means, width, yerr=men std, label='Men')
ax.bar (labels, women means, width, yerr=women std,
bottom=men means, label='Women')

ax.set ylabel ('Scores')

ax.set title('Scores by group and gender')
ax.legend ()

plt.show ()

15

Scores

Bar Plot (cont.)

Scores by group and gender

B Men
. Women

Gl G2 G3 G4

l

16

Scatter Plots

plt.scatter ([1,
plt.axis ([0, 6,
plt.show ()

2y
0,

3, 41,

20.0

17.5 4

15.0 +

12.5 4

10.0 +

1.5 4

5.0

2.5+

0.0

17

Scatter Plot

* We can vary different parameters:
v Dot size = s
v Color = ¢
v Dot shape = marker

data = {'a': np.arange(50),

'c': np.random.randint (0, 50, 50),

'd': np.random.randn (50) }
data['b'] = dataf['a'] + 10 * np.random.randn (50)
datal['d'] = np.abs(data['d"']) * 100

plt.scatter('a', 'b', c='e', s='d', data=data)
plt.xlabel ('entry a')

plt.ylabel ('entry b')

plt.show ()

plt.savefig(r'scatter.png')

entry b

60

30 1

40 -

30 1

20 1

10

_1{] =

Scatter Plot (cont.)

® .
. @
° ‘e
. L]
@ ® ®
@ ® @
i
® []
-. ®
o q °°
bt []
9
0 10 20 30 40 50

19

Scatter Plot (cont.)

data = {'a': np.arange(50),

'c': np.random.randint (0, 50, 50),

'd': np.random.randn (50) }
data['b'] = data['a'] + 10 * np.random.randn (50)
data['d'] = np.abs(data['d']) * 100

plt.scatter('a', 'b', c¢c ='ec' ,s='d’,
data=data,cmap='viridis')

plt.xlabel ('"entry a')

plt.ylabel ('entry b')
plt.colorbar(); # show color scale
plt.show ()

20

entry b

60 S

50 A

40

30 -

20 S

10 A

_1{] -

Scatter Plot (cont.)

o
o _°°
@
o ®
i
® L]
»
@
| |
10 20 30 a0 50

- 40

30

20

10

Histogram

import numpy as np

import matplotlib.pyplot as plt

np.random.seed (10 ** 7)

mu = 121

sigma = 21

X = mu + sigma * np.random.randn (1000) # randn mu=0, sigma=1

num bins = 100

n, bins, patches = plt.hist(x, num bins, density=1, color='green', alpha=0.7)

y = ((1 / (np.sgrt(2 * np.pi) * sigma)) *
np.exp(-0.5 * (1 / sigma * (bins - mu)) ** 2))
plt.plot (bins, vy, '--', color='black')

plt.xlabel ('X-Axis')

plt.ylabel ('Y-Axis')

plt.text (60, .025, r'$\mu=121,\ \sigma=21$")

plt.axis([40, 200, 0, 0.03])

plt.grid (True)

plt.title('matplotlib.pyplot.hist () function Examplel\n\n',
fontweight="bold")

plt.show()

#counts, bin edges = np.histogram(x, bins=5)

22

Y-Axis

Histogram (cont.)

matplotlib.pyplot.hist() function Example

0.030

0.025

0.020

0.015

0.010

0.005

60

80

100

120
X-AxXis

140

160

180

200

23

Pie

values = [25000,30000]

Ans= ['Yes', 'No']

plt.pie(values, labels = Ans,autopct = '$1.1£f%
$',startangle=90,explode =(0,.1))
plt.legend()

plt.title('Survey Results')

plt.show ()

Survey Results

I Yes

Stackplot

x = ['Ql', 'Q2"', 'Q3']
yl = [1000, 2000, 3000]
y2 = [1000,4000,10000]
y3 = [1000,1500,1800]

y = np.vstack([yl, y2, y3])
labels = ["China ", "US", "Europe"]

fig, ax = plt.subplots()

ax.stackplot(x, vyl, y2, y3, labels=labels)

ax.legend(loc="'upper left')
plt.show()

#ax.stackplot (x, y, labels=labels)

25

Stackplot

14000

12000

10000

8000 ~

6000 ~

4000 ~

2000 ~

I China
el us
I FEurope

26

Subplots

names = ['group a', 'group b', 'group c']
values = [1, 10, 100]

plt.

plt.
.bar (names, wvalues)

plt

plt.
plt.
plt.
.plot (names, values)
plt.
plt.

plt

figure(figsize=(9, 3))
subplot (131)

subplot (132)
scatter (names, values)
subplot (133)

suptitle ('Categorical Plotting')
show ()

27

Subplots (cont.)

100

80 -

60

40 -

20

group_a group_b group_c

Categorical Plotting

100 4 ® | 100 4
80 4 80 +
60 60
40 40
20 1 20 1
@
0@ 0 -
T T T T T T
group_a group_b group_c group_a group_b group_c

28

Subplots (cont.)

def f(t):

return np.exp(-t) * np.cos(2*np.pi*t)

tl = np.arange (0.0, 5.0
t2 = np.arange (0.0, 5.0, 0.02)

plt.figure ()
plt.subplot (211)

plt.plot(tl, f£(tl), 'ob', t2, f£(t2), 'k')

plt.subplot (212)
plt.plot(t2, np.cos(2*np.pi*t2),
plt.show ()

Vr__')

29

Subplots (cont.)

* Another way to create subplots

fig, ax = plt.subplots(21)

ax[1l].plot(t2, np.cos(2*np.pi*t2),
plt.show()

ax[0] .plot(tl, f£(tl), 'ob', t2, f£(t2), 'k'

lr__l)

30

Subplots (cont.)

1.0~

0.5 4

0.0 4

_D.S -

31

Subplots (cont.)

fig, ax = plt.subplots(2,2)

ax[0,0].plot(tl, £(tl), 'ob', t2, £(t2), 'k'")

ax[1l,1].plot(t2, np.cos(2*np.pi*t2),
plt.show ()

'r__')

32

Subplots (cont.)

=
l.l
iliHH-
IB.-.I iiiiiiii
o |==C -
llHHHw
ﬁ._l.l.r-.l iiiiii
E=N s
IIIIHH;
|A..__1.Pll:rq|..l B
O | T Tmmem——
-=x
N |
S | TTTmmm——e
lu-...
Oll -
_____u_._____
o ® v % N ©° o w © 1 9
— o o o o o — o o o —
I I
I = B
.y |
Lo
11T 1 T 1T 71
S w o »n 9o @© v % ~N Q9
— o o o — o o o o o
I

0.2 04 06 08 10

0.0

33

Annotate

ax = plt.subplot(111)

t = np.arange (0.0, 5.0, 0.01)
S = np.cos(2*np.pi*t)
line, = plt.plot(t, s, 1lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3,
arrowprops=dict (facecolor="black',
shrink=0.05),
)

plt.ylim(-2, 2)
plt.show ()

1

.9)

34

Annotate (cont.)

Writing mathematical expressions

* Any text element can use math text. You should use raw
strings (precede the quotes with an 'r'), and surround the
math text with dollar signs ($)

plt.title(r'S$\alpha > \beta$') # a=3

plt.title(r'$\alpha 1 > \beta i$')# ai>fi
plt.title(r'$\alpha”{ic} > \beta {ic}$') # o“=g
plt.title(r'$\sum {i=0}"\infty x i$') # Y =

i—0

plt.title(r'S\frac{5 - \frac{l}{x}}{4}s") #

H|-—~

plt.title(r'S\sqrt{2}S$") # 2

plt.title(r'$\sqgrt[3]1{x}$") # Ve

Image tutorial

Matplotlib includes the image module for image manipulation

import matplotlib.pyplot as plt
import matplotlib.image as mpilmg
img = mpimg.imread('cat.png')
print (1mg)

print (type (img), size (img))

[[[0.24313726 0.2901961 0.36078432
1.[0.247052]382 0.29411766 0.3647059
1.]

.i0.15686275 0.15686275 0.18431373
1.[0.05490]196 0.05490196 0.05490196
1. 11]

Process finished with exit code 0

37

Image tutorial (cont.)

* Plotting numpy arrays as images

imgplot = plt.imshow (1mg) 100
plt.show ()

200

300

400

300

600

0 100 200 300 400

Image tutorial (cont.)

Applying pseudocolor schemes to image plots. Pseudocolor can be a
useful tool for enhancing contrast and visualizing your data more easily.
This is especially useful when making presentations of your data using
projectors - their contrast is typically quite poor.

lum_img = imgl:, :, O]
plt.imshow (lum img) 100
plt.show ()

200

300

400

500

600

0] 100 200 300 400

Image tutorial (cont.)

* With a luminosity (2D, no color) image, the default colormap is applied.
The default is called viridis. There are plenty of others to choose from.

plt.imshow (lum img, cmap="hot")

0

100

200

300

400

500

600

40

Image tutorial (cont.)

that you can also change colormaps on existing plot objects using

the set_cmap() method

imgplot = plt.imshow (lum img)
plt.colorbar ()
plt.show ()

100

200

300

400

500

600

0 100 200 300 400

41

Seaborn

* if Matplotlib “tries to make easy things easy and
hard things possible”, Seaborn “tries to make a
well-defined set of hard things easy too”.

* Seaborn helps resolve the two major problems
faced by Matplotlib.
v Default Matplotlib parameters.
v’ Working with data frames.

* Starting point:

https://www.tutorialspoint.com/seaborn/seaborn tutorial.pdf

https://www.tutorialspoint.com/seaborn/seaborn_tutorial.pdf

Computer Applications Lab
0907331
LabSheet 8: Matplotlib

Please answer the following questions using the sales, cars, uploads, and movies datasets. The datasets are
available on MS Teams.

Notes:

e Grading will be based on the correctness, clarity, and completeness of the figure elements, including labels,
titles, and legends (if needed).

e The figures should be presented in the same order as the questions.

e Fill any missing values in each column with the average value of that column.

Tasks

1. Using the sales.x1lsx dataset:

a) Draw a stack plot to show sales per month.
b) Draw a pie chart representing the percentage of sales for each product in August.

¢) Determine the quarterly Sugar sales and represent them as a bar plot.

2. Using the cars.x1lsx dataset:

a) Draw a pie chart showing the percentage distribution of car displacements in the following ranges: 0-100,
100-200, 200-300, 300-400, over 400.

b) Draw a stacked bar plot illustrating the horsepower ranges for each country as shown in figure 1a.

3. Using the uploads.csv dataset (effects of COVID-19 on trade):

a) Draw a scatter plot showing the total cumulative cost for milk powder, butter, and cheese exports con-
ducted on 27/11/2015, where the value exceeds 9000. See figure 1b for an example.

b) Draw a stacked bar plot showing the sum of values for the two trade directions (Exports and Imports) for
the years 2015 to 2021, inclusive. See figure 1c for an example.

300

250 A
¢ 200
o
c
e
—
2 150 -
[=}
Q.
@
5
T 100 -
50 4
0 T T T
Europe Japan us
Origin
(a) Cars’ horsepower ranges.
lel2
lel0
L]
14
12 1
5 101 E
S z
308 s
© =
S 15
2 £
g 0.6 A
o
0.4
0.2
0.0 .
é Tonlnes Exports Imports
Measure Direction
(b) Cumulative cost. (c) Summation of values.

Figure 1: Examples.

4. Using the movies.xls dataset:

a) Draw a pie chart for the movies produced in Germany, showing the distribution based on language.

b) Draw a bar chart showing the number of movies produced by Spain, France, Canada, and China for each
year from 2011 to 2016, inclusive.

c) Draw a scatter plot representing the relationship between budget and IMDB score for movies produced
by France. The size of each point should be based on movie duration, and the colour based on the first
letter of the movie title.

d) Draw a pie chart representing the percentage of movies for each genre. Note: if a movie belongs to both
Action and War genres, it should be counted in both groups.

	Chapter 1 Python Installation IDEs, Pycharm and Jupyter Notebo
	Outline
	Installing Python
	Slide 4
	Slide 5
	Python programming using:
	Installing Pycharm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Choosing interpreter and installing packages
	Slide 13
	Slide 14
	Slide 15
	Your first python program on Pycharm
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Debugger
	Slide 24
	Slide 25
	Python programming using: (2)
	Installation And Setup
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Install Python Libraries In Anaconda
	Slide 37
	Slide 38
	Slide 39
	Anaconda Navigator
	Slide 41
	Your first python program on Jupyter notebook
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Chapter 2 Data Types and Variables
	Outline
	Print statements
	Comment
	Variables
	Slide 6
	Slide 7
	Naming errors
	Slide 9
	Slide 10
	Numeric Variables
	Slide 12
	Slide 13
	Slide 14
	Boolean Variables
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Strings
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	User input
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Lists, Tuples, Dictionaries and Set (Chapter 4)
	Outline
	List in Python
	List in Python (2)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Statistics with list of numbers
	Slide 31
	Slide 32
	Slide 33
	Looping Through a Slice
	Slide 35
	Tuples
	
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Dictionaries
	Dictionaries (2)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Set
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Control Flow and Error Exception (CH5 and CH7)
	Outline
	Conditional statements: if, elif, and else.
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	for loops
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	while loops.
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Errors and exceptions.
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Functions & Files
	Outline
	Functions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Files
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Writing to a File
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Numpy (Numerical Python) Prepared by Dr. Mohammad Abdel-majeed
	Outline
	Introduction
	Numpy
	ndarrays
	Slide 6
	Random Numbers in numPy
	Slide 8
	Create ndarray-Example
	Create ndarray-Example (2)
	Create ndarray-Example (3)
	Create ndarray-Example (4)
	NumPy data types 1
	Create ndarray-Example (5)
	Change array data type
	Indexing and Slicing
	Indexing and Slicing (2)
	2d array
	Indexing with slices – 2D Array (Examples)
	Indexing with slices – 2D Array (Examples) (2)
	Indexing with slices – 2D Array (Examples) (3)
	Indexing elements in a numpy array
	Two- dimensional array slicing
	3d 2x2x2
	Indexing
	Slide 26
	Indexing (3)
	Indexing (4)
	Indexing (5)
	Indexing (6)
	Slicing
	Slicing (2)
	Slicing (3)
	Slicing (4)
	Slide 35
	Integer Array Indexing
	Integer Array Indexing (2)
	Integer Array Indexing (3)
	Integer Array Indexing (4)
	Boolean Array Indexing
	Stacking
	Stacking (2)
	Broadcasting/Mathematical operations
	Elementwise opwerations/Mathematical (Between arrays)
	Elementwise operations/mathematical
	Elementwise Operations (scalar)
	Elementwise Operations (scalar) (2)
	Elementwise Operations?? Statistics(max,min ,sum)
	Inner Product
	Axis operations
	Axis operations (2)
	Slide 52
	Axis operations/sum
	Relational operators and numpy
	Where()
	Where() (2)
	Relational operators and numpy (with where)
	Boolean Arrays
	Sorting
	Unique
	numpy.in1d
	Get index (argsort(),argwhere(),argmax())
	Get index (argsort(),argwhere(),argmax()) (2)
	Save numpy array
	Saving multiple numpy arrays
	Loading text data into numpy array
	Loading text data into numpy array (2)
	Scipy
	Slide 69
	Scipy (2)
	Linear Algebra Numpy.linalg
	References
	File Content (sales.txt):
	Step 1: Reading and Cleaning the Data
	Step 2: Calculate Total Weekly Sales per Product
	Expected Output:
	Step 3: Find the Day with the Highest Total Sales
	Expected Output:
	Step 4: Identify the Product with the Highest Average Sales
	Expected Output:
	Step 5: Print a Formatted Sales Report
	Expected Output:
	Step 6: Analyze Minimum Sales per Product
	Expected Output:
	Step 7: Weekdays vs Weekends Sales Comparison
	Weekdays (Mon–Fri)
	Weekends (Sat–Sun)
	Compare which period generates higher revenue.
	Expected Output:
	Step 8: Add a New Product with Random Sales
	Expected Output Example:
	Step 9: Indexing and Slicing Operations
	(a) Extracting Data Slices
	Expected Output:
	(b) Axis Operations

	Find the max sale per product (axis=1).
	Find the max sale per day (axis=0).
	Expected Output:
	(c) Conditional Selection (np.where)
	Expected Output:
	(d) Fancy Indexing & Boolean Masking
	Expected Output:
	Step 10: Sorting and Ranking
	Expected Output:
	Step 11: Locating Data Points
	Expected Output:
	Step 12: Saving and Loading Arrays
	Expected Output:
	Step 13: Exporting and Importing Text Data
	Expected Output:
	Pandas Prepared by Dr. Mohammad Abdel-majeed Updated by Dr. Sam
	Outline
	Pandas
	Slide 4
	Slide 5
	Pandas Data Structures
	Series
	Slide 8
	Dataframes
	Slide 10
	DataFrames with Index
	Reading Data Files
	Slide 13
	Slide 14
	Reading Data Files (2)
	Other read_*
	Exploring the Data
	Slide 18
	Exploring the Data (2)
	Exploring the Data (3)
	Slide 21
	Exploring the Data/ Data Frames attributes
	Add Columns Titles
	Add Columns Titles (2)
	Data Access/Column Access
	Data Access/Column Access (2)
	Slide 27
	Slide 28
	Renaming Columns
	Indexing
	Index Based Selection (iloc)
	Label Based Selection (loc)
	set_index()
	set_index() (2)
	Selection
	Selection/Examples
	Assigning Data
	Data Analysis describe()
	Data Analysis describe() (2)
	Data Analysis describe() (3)
	Data Analysis/Summary describe()
	Data Analysis/Basic Statistics
	Data Analysis/Summary Aggregation
	Data Analysis/Summary describe() (2)
	Grouping
	Grouping (2)
	Grouping (3)
	Grouping (4)
	Grouping and Aggregation
	Grouping (5)
	DataFrameGroupBy.filter()
	DataFrameGroupBy.apply()
	Slide 53
	DataFrameGroupBy.apply() (2)
	Groupby()
	Slide 56
	Groupby() (2)
	Slide 58
	Slide 59
	Slide 60
	Groupby() (3)
	Sorting
	Sorting (2)
	Sorting (3)
	Sorting (4)
	Missing Data
	Slide 67
	Missing Data (2)
	Missing Data (3)
	Replacing Missing Values
	Replacing Missing Values (2)
	Removing Records with Missing Values
	fillna()/Examples
	Renaming
	Combining
	Combining/Example
	Combining/concat()
	Combining/concat() (2)
	Combining/join()()
	References
	Data Visualization using Matplotlib Prepared by Dr. Mohammad Ab
	Outline
	Data Visualization
	Data Visualization (2)
	Matplotlib.pyplot
	Examples
	Examples (2)
	Line Plot
	Line plot
	Line Plot (2)
	Line Plot (3)
	Line Plot (4)
	Bar plots
	Bar plots (2)
	Bar plots (3)
	Bar Plots
	Scatter plot
	Scatter Plot
	Scatter Plot (2)
	Scatter Plot (3)
	Scatter Plot (4)
	Histogram
	Histogram (2)
	Pie
	Stackplot
	Stackplot (2)
	Subplots
	Subplots (2)
	Subplots (3)
	Subplots (4)
	Subplots (5)
	Subplots (6)
	Slide 33
	Annotate
	Annotate (2)
	Writing mathematical expressions
	Image tutorial
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Seaborn

